LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgelqt()

subroutine dgelqt ( integer m,
integer n,
integer mb,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( ldt, * ) t,
integer ldt,
double precision, dimension( * ) work,
integer info )

DGELQT

Download DGELQT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DGELQT computes a blocked LQ factorization of a real M-by-N matrix A
!> using the compact WY representation of Q.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in]MB
!>          MB is INTEGER
!>          The block size to be used in the blocked QR.  MIN(M,N) >= MB >= 1.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is
!>          lower triangular if M <= N); the elements above the diagonal
!>          are the rows of V.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]T
!>          T is DOUBLE PRECISION array, dimension (LDT,MIN(M,N))
!>          The upper triangular block reflectors stored in compact form
!>          as a sequence of upper triangular blocks.  See below
!>          for further details.
!> 
[in]LDT
!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= MB.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MB*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The matrix V stores the elementary reflectors H(i) in the i-th row
!>  above the diagonal. For example, if M=5 and N=3, the matrix V is
!>
!>               V = (  1  v1 v1 v1 v1 )
!>                   (     1  v2 v2 v2 )
!>                   (         1 v3 v3 )
!>
!>
!>  where the vi's represent the vectors which define H(i), which are returned
!>  in the matrix A.  The 1's along the diagonal of V are not stored in A.
!>  Let K=MIN(M,N).  The number of blocks is B = ceiling(K/MB), where each
!>  block is of order MB except for the last block, which is of order
!>  IB = K - (B-1)*MB.  For each of the B blocks, a upper triangular block
!>  reflector factor is computed: T1, T2, ..., TB.  The MB-by-MB (and IB-by-IB
!>  for the last block) T's are stored in the MB-by-K matrix T as
!>
!>               T = (T1 T2 ... TB).
!> 

Definition at line 136 of file dgelqt.f.

137*
138* -- LAPACK computational routine --
139* -- LAPACK is a software package provided by Univ. of Tennessee, --
140* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
141*
142* .. Scalar Arguments ..
143 INTEGER INFO, LDA, LDT, M, N, MB
144* ..
145* .. Array Arguments ..
146 DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
147* ..
148*
149* =====================================================================
150*
151* ..
152* .. Local Scalars ..
153 INTEGER I, IB, IINFO, K
154* ..
155* .. External Subroutines ..
156 EXTERNAL dgelqt3, dlarfb, xerbla
157* ..
158* .. Executable Statements ..
159*
160* Test the input arguments
161*
162 info = 0
163 IF( m.LT.0 ) THEN
164 info = -1
165 ELSE IF( n.LT.0 ) THEN
166 info = -2
167 ELSE IF( mb.LT.1 .OR. ( mb.GT.min(m,n) .AND. min(m,n).GT.0 ) )THEN
168 info = -3
169 ELSE IF( lda.LT.max( 1, m ) ) THEN
170 info = -5
171 ELSE IF( ldt.LT.mb ) THEN
172 info = -7
173 END IF
174 IF( info.NE.0 ) THEN
175 CALL xerbla( 'DGELQT', -info )
176 RETURN
177 END IF
178*
179* Quick return if possible
180*
181 k = min( m, n )
182 IF( k.EQ.0 ) RETURN
183*
184* Blocked loop of length K
185*
186 DO i = 1, k, mb
187 ib = min( k-i+1, mb )
188*
189* Compute the LQ factorization of the current block A(I:M,I:I+IB-1)
190*
191 CALL dgelqt3( ib, n-i+1, a(i,i), lda, t(1,i), ldt, iinfo )
192 IF( i+ib.LE.m ) THEN
193*
194* Update by applying H**T to A(I:M,I+IB:N) from the right
195*
196 CALL dlarfb( 'R', 'N', 'F', 'R', m-i-ib+1, n-i+1, ib,
197 $ a( i, i ), lda, t( 1, i ), ldt,
198 $ a( i+ib, i ), lda, work , m-i-ib+1 )
199 END IF
200 END DO
201 RETURN
202*
203* End of DGELQT
204*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
recursive subroutine dgelqt3(m, n, a, lda, t, ldt, info)
DGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact...
Definition dgelqt3.f:129
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition dlarfb.f:195
Here is the call graph for this function:
Here is the caller graph for this function: