LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zhpgvd.f
Go to the documentation of this file.
1*> \brief \b ZHPGVD
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZHPGVD + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhpgvd.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhpgvd.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhpgvd.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZHPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
20* LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
21*
22* .. Scalar Arguments ..
23* CHARACTER JOBZ, UPLO
24* INTEGER INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
25* ..
26* .. Array Arguments ..
27* INTEGER IWORK( * )
28* DOUBLE PRECISION RWORK( * ), W( * )
29* COMPLEX*16 AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
30* ..
31*
32*
33*> \par Purpose:
34* =============
35*>
36*> \verbatim
37*>
38*> ZHPGVD computes all the eigenvalues and, optionally, the eigenvectors
39*> of a complex generalized Hermitian-definite eigenproblem, of the form
40*> A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and
41*> B are assumed to be Hermitian, stored in packed format, and B is also
42*> positive definite.
43*> If eigenvectors are desired, it uses a divide and conquer algorithm.
44*>
45*> \endverbatim
46*
47* Arguments:
48* ==========
49*
50*> \param[in] ITYPE
51*> \verbatim
52*> ITYPE is INTEGER
53*> Specifies the problem type to be solved:
54*> = 1: A*x = (lambda)*B*x
55*> = 2: A*B*x = (lambda)*x
56*> = 3: B*A*x = (lambda)*x
57*> \endverbatim
58*>
59*> \param[in] JOBZ
60*> \verbatim
61*> JOBZ is CHARACTER*1
62*> = 'N': Compute eigenvalues only;
63*> = 'V': Compute eigenvalues and eigenvectors.
64*> \endverbatim
65*>
66*> \param[in] UPLO
67*> \verbatim
68*> UPLO is CHARACTER*1
69*> = 'U': Upper triangles of A and B are stored;
70*> = 'L': Lower triangles of A and B are stored.
71*> \endverbatim
72*>
73*> \param[in] N
74*> \verbatim
75*> N is INTEGER
76*> The order of the matrices A and B. N >= 0.
77*> \endverbatim
78*>
79*> \param[in,out] AP
80*> \verbatim
81*> AP is COMPLEX*16 array, dimension (N*(N+1)/2)
82*> On entry, the upper or lower triangle of the Hermitian matrix
83*> A, packed columnwise in a linear array. The j-th column of A
84*> is stored in the array AP as follows:
85*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
86*> if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
87*>
88*> On exit, the contents of AP are destroyed.
89*> \endverbatim
90*>
91*> \param[in,out] BP
92*> \verbatim
93*> BP is COMPLEX*16 array, dimension (N*(N+1)/2)
94*> On entry, the upper or lower triangle of the Hermitian matrix
95*> B, packed columnwise in a linear array. The j-th column of B
96*> is stored in the array BP as follows:
97*> if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
98*> if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
99*>
100*> On exit, the triangular factor U or L from the Cholesky
101*> factorization B = U**H*U or B = L*L**H, in the same storage
102*> format as B.
103*> \endverbatim
104*>
105*> \param[out] W
106*> \verbatim
107*> W is DOUBLE PRECISION array, dimension (N)
108*> If INFO = 0, the eigenvalues in ascending order.
109*> \endverbatim
110*>
111*> \param[out] Z
112*> \verbatim
113*> Z is COMPLEX*16 array, dimension (LDZ, N)
114*> If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
115*> eigenvectors. The eigenvectors are normalized as follows:
116*> if ITYPE = 1 or 2, Z**H*B*Z = I;
117*> if ITYPE = 3, Z**H*inv(B)*Z = I.
118*> If JOBZ = 'N', then Z is not referenced.
119*> \endverbatim
120*>
121*> \param[in] LDZ
122*> \verbatim
123*> LDZ is INTEGER
124*> The leading dimension of the array Z. LDZ >= 1, and if
125*> JOBZ = 'V', LDZ >= max(1,N).
126*> \endverbatim
127*>
128*> \param[out] WORK
129*> \verbatim
130*> WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
131*> On exit, if INFO = 0, WORK(1) returns the required LWORK.
132*> \endverbatim
133*>
134*> \param[in] LWORK
135*> \verbatim
136*> LWORK is INTEGER
137*> The dimension of the array WORK.
138*> If N <= 1, LWORK >= 1.
139*> If JOBZ = 'N' and N > 1, LWORK >= N.
140*> If JOBZ = 'V' and N > 1, LWORK >= 2*N.
141*>
142*> If LWORK = -1, then a workspace query is assumed; the routine
143*> only calculates the required sizes of the WORK, RWORK and
144*> IWORK arrays, returns these values as the first entries of
145*> the WORK, RWORK and IWORK arrays, and no error message
146*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
147*> \endverbatim
148*>
149*> \param[out] RWORK
150*> \verbatim
151*> RWORK is DOUBLE PRECISION array, dimension (MAX(1,LRWORK))
152*> On exit, if INFO = 0, RWORK(1) returns the required LRWORK.
153*> \endverbatim
154*>
155*> \param[in] LRWORK
156*> \verbatim
157*> LRWORK is INTEGER
158*> The dimension of array RWORK.
159*> If N <= 1, LRWORK >= 1.
160*> If JOBZ = 'N' and N > 1, LRWORK >= N.
161*> If JOBZ = 'V' and N > 1, LRWORK >= 1 + 5*N + 2*N**2.
162*>
163*> If LRWORK = -1, then a workspace query is assumed; the
164*> routine only calculates the required sizes of the WORK, RWORK
165*> and IWORK arrays, returns these values as the first entries
166*> of the WORK, RWORK and IWORK arrays, and no error message
167*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
168*> \endverbatim
169*>
170*> \param[out] IWORK
171*> \verbatim
172*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
173*> On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
174*> \endverbatim
175*>
176*> \param[in] LIWORK
177*> \verbatim
178*> LIWORK is INTEGER
179*> The dimension of array IWORK.
180*> If JOBZ = 'N' or N <= 1, LIWORK >= 1.
181*> If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N.
182*>
183*> If LIWORK = -1, then a workspace query is assumed; the
184*> routine only calculates the required sizes of the WORK, RWORK
185*> and IWORK arrays, returns these values as the first entries
186*> of the WORK, RWORK and IWORK arrays, and no error message
187*> related to LWORK or LRWORK or LIWORK is issued by XERBLA.
188*> \endverbatim
189*>
190*> \param[out] INFO
191*> \verbatim
192*> INFO is INTEGER
193*> = 0: successful exit
194*> < 0: if INFO = -i, the i-th argument had an illegal value
195*> > 0: ZPPTRF or ZHPEVD returned an error code:
196*> <= N: if INFO = i, ZHPEVD failed to converge;
197*> i off-diagonal elements of an intermediate
198*> tridiagonal form did not convergeto zero;
199*> > N: if INFO = N + i, for 1 <= i <= n, then the leading
200*> principal minor of order i of B is not positive.
201*> The factorization of B could not be completed and
202*> no eigenvalues or eigenvectors were computed.
203*> \endverbatim
204*
205* Authors:
206* ========
207*
208*> \author Univ. of Tennessee
209*> \author Univ. of California Berkeley
210*> \author Univ. of Colorado Denver
211*> \author NAG Ltd.
212*
213*> \ingroup hpgvd
214*
215*> \par Contributors:
216* ==================
217*>
218*> Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
219*
220* =====================================================================
221 SUBROUTINE zhpgvd( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ,
222 $ WORK,
223 $ LWORK, RWORK, LRWORK, IWORK, LIWORK, INFO )
224*
225* -- LAPACK driver routine --
226* -- LAPACK is a software package provided by Univ. of Tennessee, --
227* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
228*
229* .. Scalar Arguments ..
230 CHARACTER JOBZ, UPLO
231 INTEGER INFO, ITYPE, LDZ, LIWORK, LRWORK, LWORK, N
232* ..
233* .. Array Arguments ..
234 INTEGER IWORK( * )
235 DOUBLE PRECISION RWORK( * ), W( * )
236 COMPLEX*16 AP( * ), BP( * ), WORK( * ), Z( LDZ, * )
237* ..
238*
239* =====================================================================
240*
241* .. Local Scalars ..
242 LOGICAL LQUERY, UPPER, WANTZ
243 CHARACTER TRANS
244 INTEGER J, LIWMIN, LRWMIN, LWMIN, NEIG
245* ..
246* .. External Functions ..
247 LOGICAL LSAME
248 EXTERNAL LSAME
249* ..
250* .. External Subroutines ..
251 EXTERNAL xerbla, zhpevd, zhpgst, zpptrf, ztpmv,
252 $ ztpsv
253* ..
254* .. Intrinsic Functions ..
255 INTRINSIC dble, max
256* ..
257* .. Executable Statements ..
258*
259* Test the input parameters.
260*
261 wantz = lsame( jobz, 'V' )
262 upper = lsame( uplo, 'U' )
263 lquery = ( lwork.EQ.-1 .OR. lrwork.EQ.-1 .OR. liwork.EQ.-1 )
264*
265 info = 0
266 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
267 info = -1
268 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
269 info = -2
270 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
271 info = -3
272 ELSE IF( n.LT.0 ) THEN
273 info = -4
274 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
275 info = -9
276 END IF
277*
278 IF( info.EQ.0 ) THEN
279 IF( n.LE.1 ) THEN
280 lwmin = 1
281 liwmin = 1
282 lrwmin = 1
283 ELSE
284 IF( wantz ) THEN
285 lwmin = 2*n
286 lrwmin = 1 + 5*n + 2*n**2
287 liwmin = 3 + 5*n
288 ELSE
289 lwmin = n
290 lrwmin = n
291 liwmin = 1
292 END IF
293 END IF
294*
295 work( 1 ) = lwmin
296 rwork( 1 ) = real( lrwmin )
297 iwork( 1 ) = liwmin
298 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
299 info = -11
300 ELSE IF( lrwork.LT.lrwmin .AND. .NOT.lquery ) THEN
301 info = -13
302 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
303 info = -15
304 END IF
305 END IF
306*
307 IF( info.NE.0 ) THEN
308 CALL xerbla( 'ZHPGVD', -info )
309 RETURN
310 ELSE IF( lquery ) THEN
311 RETURN
312 END IF
313*
314* Quick return if possible
315*
316 IF( n.EQ.0 )
317 $ RETURN
318*
319* Form a Cholesky factorization of B.
320*
321 CALL zpptrf( uplo, n, bp, info )
322 IF( info.NE.0 ) THEN
323 info = n + info
324 RETURN
325 END IF
326*
327* Transform problem to standard eigenvalue problem and solve.
328*
329 CALL zhpgst( itype, uplo, n, ap, bp, info )
330 CALL zhpevd( jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork,
331 $ lrwork, iwork, liwork, info )
332 lwmin = int( max( dble( lwmin ), dble( work( 1 ) ) ) )
333 lrwmin = int( max( dble( lrwmin ), dble( rwork( 1 ) ) ) )
334 liwmin = int( max( dble( liwmin ), dble( iwork( 1 ) ) ) )
335*
336 IF( wantz ) THEN
337*
338* Backtransform eigenvectors to the original problem.
339*
340 neig = n
341 IF( info.GT.0 )
342 $ neig = info - 1
343 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
344*
345* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
346* backtransform eigenvectors: x = inv(L)**H *y or inv(U)*y
347*
348 IF( upper ) THEN
349 trans = 'N'
350 ELSE
351 trans = 'C'
352 END IF
353*
354 DO 10 j = 1, neig
355 CALL ztpsv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
356 $ 1 )
357 10 CONTINUE
358*
359 ELSE IF( itype.EQ.3 ) THEN
360*
361* For B*A*x=(lambda)*x;
362* backtransform eigenvectors: x = L*y or U**H *y
363*
364 IF( upper ) THEN
365 trans = 'C'
366 ELSE
367 trans = 'N'
368 END IF
369*
370 DO 20 j = 1, neig
371 CALL ztpmv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
372 $ 1 )
373 20 CONTINUE
374 END IF
375 END IF
376*
377 work( 1 ) = lwmin
378 rwork( 1 ) = real( lrwmin )
379 iwork( 1 ) = liwmin
380 RETURN
381*
382* End of ZHPGVD
383*
384 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zhpevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition zhpevd.f:192
subroutine zhpgst(itype, uplo, n, ap, bp, info)
ZHPGST
Definition zhpgst.f:111
subroutine zhpgvd(itype, jobz, uplo, n, ap, bp, w, z, ldz, work, lwork, rwork, lrwork, iwork, liwork, info)
ZHPGVD
Definition zhpgvd.f:224
subroutine zpptrf(uplo, n, ap, info)
ZPPTRF
Definition zpptrf.f:117
subroutine ztpmv(uplo, trans, diag, n, ap, x, incx)
ZTPMV
Definition ztpmv.f:142
subroutine ztpsv(uplo, trans, diag, n, ap, x, incx)
ZTPSV
Definition ztpsv.f:144