LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cuncsd()

recursive subroutine cuncsd ( character  jobu1,
character  jobu2,
character  jobv1t,
character  jobv2t,
character  trans,
character  signs,
integer  m,
integer  p,
integer  q,
complex, dimension( ldx11, * )  x11,
integer  ldx11,
complex, dimension( ldx12, * )  x12,
integer  ldx12,
complex, dimension( ldx21, * )  x21,
integer  ldx21,
complex, dimension( ldx22, * )  x22,
integer  ldx22,
real, dimension( * )  theta,
complex, dimension( ldu1, * )  u1,
integer  ldu1,
complex, dimension( ldu2, * )  u2,
integer  ldu2,
complex, dimension( ldv1t, * )  v1t,
integer  ldv1t,
complex, dimension( ldv2t, * )  v2t,
integer  ldv2t,
complex, dimension( * )  work,
integer  lwork,
real, dimension( * )  rwork,
integer  lrwork,
integer, dimension( * )  iwork,
integer  info 
)

CUNCSD

Download CUNCSD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CUNCSD computes the CS decomposition of an M-by-M partitioned
 unitary matrix X:

                                 [  I  0  0 |  0  0  0 ]
                                 [  0  C  0 |  0 -S  0 ]
     [ X11 | X12 ]   [ U1 |    ] [  0  0  0 |  0  0 -I ] [ V1 |    ]**H
 X = [-----------] = [---------] [---------------------] [---------]   .
     [ X21 | X22 ]   [    | U2 ] [  0  0  0 |  I  0  0 ] [    | V2 ]
                                 [  0  S  0 |  0  C  0 ]
                                 [  0  0  I |  0  0  0 ]

 X11 is P-by-Q. The unitary matrices U1, U2, V1, and V2 are P-by-P,
 (M-P)-by-(M-P), Q-by-Q, and (M-Q)-by-(M-Q), respectively. C and S are
 R-by-R nonnegative diagonal matrices satisfying C^2 + S^2 = I, in
 which R = MIN(P,M-P,Q,M-Q).
Parameters
[in]JOBU1
          JOBU1 is CHARACTER
          = 'Y':      U1 is computed;
          otherwise:  U1 is not computed.
[in]JOBU2
          JOBU2 is CHARACTER
          = 'Y':      U2 is computed;
          otherwise:  U2 is not computed.
[in]JOBV1T
          JOBV1T is CHARACTER
          = 'Y':      V1T is computed;
          otherwise:  V1T is not computed.
[in]JOBV2T
          JOBV2T is CHARACTER
          = 'Y':      V2T is computed;
          otherwise:  V2T is not computed.
[in]TRANS
          TRANS is CHARACTER
          = 'T':      X, U1, U2, V1T, and V2T are stored in row-major
                      order;
          otherwise:  X, U1, U2, V1T, and V2T are stored in column-
                      major order.
[in]SIGNS
          SIGNS is CHARACTER
          = 'O':      The lower-left block is made nonpositive (the
                      "other" convention);
          otherwise:  The upper-right block is made nonpositive (the
                      "default" convention).
[in]M
          M is INTEGER
          The number of rows and columns in X.
[in]P
          P is INTEGER
          The number of rows in X11 and X12. 0 <= P <= M.
[in]Q
          Q is INTEGER
          The number of columns in X11 and X21. 0 <= Q <= M.
[in,out]X11
          X11 is COMPLEX array, dimension (LDX11,Q)
          On entry, part of the unitary matrix whose CSD is desired.
[in]LDX11
          LDX11 is INTEGER
          The leading dimension of X11. LDX11 >= MAX(1,P).
[in,out]X12
          X12 is COMPLEX array, dimension (LDX12,M-Q)
          On entry, part of the unitary matrix whose CSD is desired.
[in]LDX12
          LDX12 is INTEGER
          The leading dimension of X12. LDX12 >= MAX(1,P).
[in,out]X21
          X21 is COMPLEX array, dimension (LDX21,Q)
          On entry, part of the unitary matrix whose CSD is desired.
[in]LDX21
          LDX21 is INTEGER
          The leading dimension of X11. LDX21 >= MAX(1,M-P).
[in,out]X22
          X22 is COMPLEX array, dimension (LDX22,M-Q)
          On entry, part of the unitary matrix whose CSD is desired.
[in]LDX22
          LDX22 is INTEGER
          The leading dimension of X11. LDX22 >= MAX(1,M-P).
[out]THETA
          THETA is REAL array, dimension (R), in which R =
          MIN(P,M-P,Q,M-Q).
          C = DIAG( COS(THETA(1)), ... , COS(THETA(R)) ) and
          S = DIAG( SIN(THETA(1)), ... , SIN(THETA(R)) ).
[out]U1
          U1 is COMPLEX array, dimension (LDU1,P)
          If JOBU1 = 'Y', U1 contains the P-by-P unitary matrix U1.
[in]LDU1
          LDU1 is INTEGER
          The leading dimension of U1. If JOBU1 = 'Y', LDU1 >=
          MAX(1,P).
[out]U2
          U2 is COMPLEX array, dimension (LDU2,M-P)
          If JOBU2 = 'Y', U2 contains the (M-P)-by-(M-P) unitary
          matrix U2.
[in]LDU2
          LDU2 is INTEGER
          The leading dimension of U2. If JOBU2 = 'Y', LDU2 >=
          MAX(1,M-P).
[out]V1T
          V1T is COMPLEX array, dimension (LDV1T,Q)
          If JOBV1T = 'Y', V1T contains the Q-by-Q matrix unitary
          matrix V1**H.
[in]LDV1T
          LDV1T is INTEGER
          The leading dimension of V1T. If JOBV1T = 'Y', LDV1T >=
          MAX(1,Q).
[out]V2T
          V2T is COMPLEX array, dimension (LDV2T,M-Q)
          If JOBV2T = 'Y', V2T contains the (M-Q)-by-(M-Q) unitary
          matrix V2**H.
[in]LDV2T
          LDV2T is INTEGER
          The leading dimension of V2T. If JOBV2T = 'Y', LDV2T >=
          MAX(1,M-Q).
[out]WORK
          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the work array, and no error
          message related to LWORK is issued by XERBLA.
[out]RWORK
          RWORK is REAL array, dimension MAX(1,LRWORK)
          On exit, if INFO = 0, RWORK(1) returns the optimal LRWORK.
          If INFO > 0 on exit, RWORK(2:R) contains the values PHI(1),
          ..., PHI(R-1) that, together with THETA(1), ..., THETA(R),
          define the matrix in intermediate bidiagonal-block form
          remaining after nonconvergence. INFO specifies the number
          of nonzero PHI's.
[in]LRWORK
          LRWORK is INTEGER
          The dimension of the array RWORK.

          If LRWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the RWORK array, returns
          this value as the first entry of the work array, and no error
          message related to LRWORK is issued by XERBLA.
[out]IWORK
          IWORK is INTEGER array, dimension (M-MIN(P,M-P,Q,M-Q))
[out]INFO
          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  CBBCSD did not converge. See the description of RWORK
                above for details.
References:
[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 314 of file cuncsd.f.

320*
321* -- LAPACK computational routine --
322* -- LAPACK is a software package provided by Univ. of Tennessee, --
323* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
324*
325* .. Scalar Arguments ..
326 CHARACTER JOBU1, JOBU2, JOBV1T, JOBV2T, SIGNS, TRANS
327 INTEGER INFO, LDU1, LDU2, LDV1T, LDV2T, LDX11, LDX12,
328 $ LDX21, LDX22, LRWORK, LWORK, M, P, Q
329* ..
330* .. Array Arguments ..
331 INTEGER IWORK( * )
332 REAL THETA( * )
333 REAL RWORK( * )
334 COMPLEX U1( LDU1, * ), U2( LDU2, * ), V1T( LDV1T, * ),
335 $ V2T( LDV2T, * ), WORK( * ), X11( LDX11, * ),
336 $ X12( LDX12, * ), X21( LDX21, * ), X22( LDX22,
337 $ * )
338* ..
339*
340* ===================================================================
341*
342* .. Parameters ..
343 COMPLEX ONE, ZERO
344 parameter( one = (1.0e0,0.0e0),
345 $ zero = (0.0e0,0.0e0) )
346* ..
347* .. Local Scalars ..
348 CHARACTER TRANST, SIGNST
349 INTEGER CHILDINFO, I, IB11D, IB11E, IB12D, IB12E,
350 $ IB21D, IB21E, IB22D, IB22E, IBBCSD, IORBDB,
351 $ IORGLQ, IORGQR, IPHI, ITAUP1, ITAUP2, ITAUQ1,
352 $ ITAUQ2, J, LBBCSDWORK, LBBCSDWORKMIN,
353 $ LBBCSDWORKOPT, LORBDBWORK, LORBDBWORKMIN,
354 $ LORBDBWORKOPT, LORGLQWORK, LORGLQWORKMIN,
355 $ LORGLQWORKOPT, LORGQRWORK, LORGQRWORKMIN,
356 $ LORGQRWORKOPT, LWORKMIN, LWORKOPT, P1, Q1
357 LOGICAL COLMAJOR, DEFAULTSIGNS, LQUERY, WANTU1, WANTU2,
358 $ WANTV1T, WANTV2T
359 INTEGER LRWORKMIN, LRWORKOPT
360 LOGICAL LRQUERY
361* ..
362* .. External Subroutines ..
363 EXTERNAL xerbla, cbbcsd, clacpy, clapmr, clapmt,
365* ..
366* .. External Functions ..
367 LOGICAL LSAME
368 REAL SROUNDUP_LWORK
369 EXTERNAL lsame, sroundup_lwork
370* ..
371* .. Intrinsic Functions
372 INTRINSIC int, max, min
373* ..
374* .. Executable Statements ..
375*
376* Test input arguments
377*
378 info = 0
379 wantu1 = lsame( jobu1, 'Y' )
380 wantu2 = lsame( jobu2, 'Y' )
381 wantv1t = lsame( jobv1t, 'Y' )
382 wantv2t = lsame( jobv2t, 'Y' )
383 colmajor = .NOT. lsame( trans, 'T' )
384 defaultsigns = .NOT. lsame( signs, 'O' )
385 lquery = lwork .EQ. -1
386 lrquery = lrwork .EQ. -1
387 IF( m .LT. 0 ) THEN
388 info = -7
389 ELSE IF( p .LT. 0 .OR. p .GT. m ) THEN
390 info = -8
391 ELSE IF( q .LT. 0 .OR. q .GT. m ) THEN
392 info = -9
393 ELSE IF ( colmajor .AND. ldx11 .LT. max( 1, p ) ) THEN
394 info = -11
395 ELSE IF (.NOT. colmajor .AND. ldx11 .LT. max( 1, q ) ) THEN
396 info = -11
397 ELSE IF (colmajor .AND. ldx12 .LT. max( 1, p ) ) THEN
398 info = -13
399 ELSE IF (.NOT. colmajor .AND. ldx12 .LT. max( 1, m-q ) ) THEN
400 info = -13
401 ELSE IF (colmajor .AND. ldx21 .LT. max( 1, m-p ) ) THEN
402 info = -15
403 ELSE IF (.NOT. colmajor .AND. ldx21 .LT. max( 1, q ) ) THEN
404 info = -15
405 ELSE IF (colmajor .AND. ldx22 .LT. max( 1, m-p ) ) THEN
406 info = -17
407 ELSE IF (.NOT. colmajor .AND. ldx22 .LT. max( 1, m-q ) ) THEN
408 info = -17
409 ELSE IF( wantu1 .AND. ldu1 .LT. p ) THEN
410 info = -20
411 ELSE IF( wantu2 .AND. ldu2 .LT. m-p ) THEN
412 info = -22
413 ELSE IF( wantv1t .AND. ldv1t .LT. q ) THEN
414 info = -24
415 ELSE IF( wantv2t .AND. ldv2t .LT. m-q ) THEN
416 info = -26
417 END IF
418*
419* Work with transpose if convenient
420*
421 IF( info .EQ. 0 .AND. min( p, m-p ) .LT. min( q, m-q ) ) THEN
422 IF( colmajor ) THEN
423 transt = 'T'
424 ELSE
425 transt = 'N'
426 END IF
427 IF( defaultsigns ) THEN
428 signst = 'O'
429 ELSE
430 signst = 'D'
431 END IF
432 CALL cuncsd( jobv1t, jobv2t, jobu1, jobu2, transt, signst, m,
433 $ q, p, x11, ldx11, x21, ldx21, x12, ldx12, x22,
434 $ ldx22, theta, v1t, ldv1t, v2t, ldv2t, u1, ldu1,
435 $ u2, ldu2, work, lwork, rwork, lrwork, iwork,
436 $ info )
437 RETURN
438 END IF
439*
440* Work with permutation [ 0 I; I 0 ] * X * [ 0 I; I 0 ] if
441* convenient
442*
443 IF( info .EQ. 0 .AND. m-q .LT. q ) THEN
444 IF( defaultsigns ) THEN
445 signst = 'O'
446 ELSE
447 signst = 'D'
448 END IF
449 CALL cuncsd( jobu2, jobu1, jobv2t, jobv1t, trans, signst, m,
450 $ m-p, m-q, x22, ldx22, x21, ldx21, x12, ldx12, x11,
451 $ ldx11, theta, u2, ldu2, u1, ldu1, v2t, ldv2t, v1t,
452 $ ldv1t, work, lwork, rwork, lrwork, iwork, info )
453 RETURN
454 END IF
455*
456* Compute workspace
457*
458 IF( info .EQ. 0 ) THEN
459*
460* Real workspace
461*
462 iphi = 2
463 ib11d = iphi + max( 1, q - 1 )
464 ib11e = ib11d + max( 1, q )
465 ib12d = ib11e + max( 1, q - 1 )
466 ib12e = ib12d + max( 1, q )
467 ib21d = ib12e + max( 1, q - 1 )
468 ib21e = ib21d + max( 1, q )
469 ib22d = ib21e + max( 1, q - 1 )
470 ib22e = ib22d + max( 1, q )
471 ibbcsd = ib22e + max( 1, q - 1 )
472 CALL cbbcsd( jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q,
473 $ theta, theta, u1, ldu1, u2, ldu2, v1t, ldv1t,
474 $ v2t, ldv2t, theta, theta, theta, theta, theta,
475 $ theta, theta, theta, rwork, -1, childinfo )
476 lbbcsdworkopt = int( rwork(1) )
477 lbbcsdworkmin = lbbcsdworkopt
478 lrworkopt = ibbcsd + lbbcsdworkopt - 1
479 lrworkmin = ibbcsd + lbbcsdworkmin - 1
480 rwork(1) = lrworkopt
481*
482* Complex workspace
483*
484 itaup1 = 2
485 itaup2 = itaup1 + max( 1, p )
486 itauq1 = itaup2 + max( 1, m - p )
487 itauq2 = itauq1 + max( 1, q )
488 iorgqr = itauq2 + max( 1, m - q )
489 CALL cungqr( m-q, m-q, m-q, u1, max(1,m-q), u1, work, -1,
490 $ childinfo )
491 lorgqrworkopt = int( work(1) )
492 lorgqrworkmin = max( 1, m - q )
493 iorglq = itauq2 + max( 1, m - q )
494 CALL cunglq( m-q, m-q, m-q, u1, max(1,m-q), u1, work, -1,
495 $ childinfo )
496 lorglqworkopt = int( work(1) )
497 lorglqworkmin = max( 1, m - q )
498 iorbdb = itauq2 + max( 1, m - q )
499 CALL cunbdb( trans, signs, m, p, q, x11, ldx11, x12, ldx12,
500 $ x21, ldx21, x22, ldx22, theta, theta, u1, u2,
501 $ v1t, v2t, work, -1, childinfo )
502 lorbdbworkopt = int( work(1) )
503 lorbdbworkmin = lorbdbworkopt
504 lworkopt = max( iorgqr + lorgqrworkopt, iorglq + lorglqworkopt,
505 $ iorbdb + lorbdbworkopt ) - 1
506 lworkmin = max( iorgqr + lorgqrworkmin, iorglq + lorglqworkmin,
507 $ iorbdb + lorbdbworkmin ) - 1
508 lworkopt = max(lworkopt,lworkmin)
509 work(1) = sroundup_lwork(lworkopt)
510*
511 IF( lwork .LT. lworkmin
512 $ .AND. .NOT. ( lquery .OR. lrquery ) ) THEN
513 info = -22
514 ELSE IF( lrwork .LT. lrworkmin
515 $ .AND. .NOT. ( lquery .OR. lrquery ) ) THEN
516 info = -24
517 ELSE
518 lorgqrwork = lwork - iorgqr + 1
519 lorglqwork = lwork - iorglq + 1
520 lorbdbwork = lwork - iorbdb + 1
521 lbbcsdwork = lrwork - ibbcsd + 1
522 END IF
523 END IF
524*
525* Abort if any illegal arguments
526*
527 IF( info .NE. 0 ) THEN
528 CALL xerbla( 'CUNCSD', -info )
529 RETURN
530 ELSE IF( lquery .OR. lrquery ) THEN
531 RETURN
532 END IF
533*
534* Transform to bidiagonal block form
535*
536 CALL cunbdb( trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21,
537 $ ldx21, x22, ldx22, theta, rwork(iphi), work(itaup1),
538 $ work(itaup2), work(itauq1), work(itauq2),
539 $ work(iorbdb), lorbdbwork, childinfo )
540*
541* Accumulate Householder reflectors
542*
543 IF( colmajor ) THEN
544 IF( wantu1 .AND. p .GT. 0 ) THEN
545 CALL clacpy( 'L', p, q, x11, ldx11, u1, ldu1 )
546 CALL cungqr( p, p, q, u1, ldu1, work(itaup1), work(iorgqr),
547 $ lorgqrwork, info)
548 END IF
549 IF( wantu2 .AND. m-p .GT. 0 ) THEN
550 CALL clacpy( 'L', m-p, q, x21, ldx21, u2, ldu2 )
551 CALL cungqr( m-p, m-p, q, u2, ldu2, work(itaup2),
552 $ work(iorgqr), lorgqrwork, info )
553 END IF
554 IF( wantv1t .AND. q .GT. 0 ) THEN
555 CALL clacpy( 'U', q-1, q-1, x11(1,2), ldx11, v1t(2,2),
556 $ ldv1t )
557 v1t(1, 1) = one
558 DO j = 2, q
559 v1t(1,j) = zero
560 v1t(j,1) = zero
561 END DO
562 CALL cunglq( q-1, q-1, q-1, v1t(2,2), ldv1t, work(itauq1),
563 $ work(iorglq), lorglqwork, info )
564 END IF
565 IF( wantv2t .AND. m-q .GT. 0 ) THEN
566 CALL clacpy( 'U', p, m-q, x12, ldx12, v2t, ldv2t )
567 IF( m-p .GT. q ) THEN
568 CALL clacpy( 'U', m-p-q, m-p-q, x22(q+1,p+1), ldx22,
569 $ v2t(p+1,p+1), ldv2t )
570 END IF
571 IF( m .GT. q ) THEN
572 CALL cunglq( m-q, m-q, m-q, v2t, ldv2t, work(itauq2),
573 $ work(iorglq), lorglqwork, info )
574 END IF
575 END IF
576 ELSE
577 IF( wantu1 .AND. p .GT. 0 ) THEN
578 CALL clacpy( 'U', q, p, x11, ldx11, u1, ldu1 )
579 CALL cunglq( p, p, q, u1, ldu1, work(itaup1), work(iorglq),
580 $ lorglqwork, info)
581 END IF
582 IF( wantu2 .AND. m-p .GT. 0 ) THEN
583 CALL clacpy( 'U', q, m-p, x21, ldx21, u2, ldu2 )
584 CALL cunglq( m-p, m-p, q, u2, ldu2, work(itaup2),
585 $ work(iorglq), lorglqwork, info )
586 END IF
587 IF( wantv1t .AND. q .GT. 0 ) THEN
588 CALL clacpy( 'L', q-1, q-1, x11(2,1), ldx11, v1t(2,2),
589 $ ldv1t )
590 v1t(1, 1) = one
591 DO j = 2, q
592 v1t(1,j) = zero
593 v1t(j,1) = zero
594 END DO
595 CALL cungqr( q-1, q-1, q-1, v1t(2,2), ldv1t, work(itauq1),
596 $ work(iorgqr), lorgqrwork, info )
597 END IF
598 IF( wantv2t .AND. m-q .GT. 0 ) THEN
599 p1 = min( p+1, m )
600 q1 = min( q+1, m )
601 CALL clacpy( 'L', m-q, p, x12, ldx12, v2t, ldv2t )
602 IF ( m .GT. p+q ) THEN
603 CALL clacpy( 'L', m-p-q, m-p-q, x22(p1,q1), ldx22,
604 $ v2t(p+1,p+1), ldv2t )
605 END IF
606 CALL cungqr( m-q, m-q, m-q, v2t, ldv2t, work(itauq2),
607 $ work(iorgqr), lorgqrwork, info )
608 END IF
609 END IF
610*
611* Compute the CSD of the matrix in bidiagonal-block form
612*
613 CALL cbbcsd( jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, theta,
614 $ rwork(iphi), u1, ldu1, u2, ldu2, v1t, ldv1t, v2t,
615 $ ldv2t, rwork(ib11d), rwork(ib11e), rwork(ib12d),
616 $ rwork(ib12e), rwork(ib21d), rwork(ib21e),
617 $ rwork(ib22d), rwork(ib22e), rwork(ibbcsd),
618 $ lbbcsdwork, info )
619*
620* Permute rows and columns to place identity submatrices in top-
621* left corner of (1,1)-block and/or bottom-right corner of (1,2)-
622* block and/or bottom-right corner of (2,1)-block and/or top-left
623* corner of (2,2)-block
624*
625 IF( q .GT. 0 .AND. wantu2 ) THEN
626 DO i = 1, q
627 iwork(i) = m - p - q + i
628 END DO
629 DO i = q + 1, m - p
630 iwork(i) = i - q
631 END DO
632 IF( colmajor ) THEN
633 CALL clapmt( .false., m-p, m-p, u2, ldu2, iwork )
634 ELSE
635 CALL clapmr( .false., m-p, m-p, u2, ldu2, iwork )
636 END IF
637 END IF
638 IF( m .GT. 0 .AND. wantv2t ) THEN
639 DO i = 1, p
640 iwork(i) = m - p - q + i
641 END DO
642 DO i = p + 1, m - q
643 iwork(i) = i - p
644 END DO
645 IF( .NOT. colmajor ) THEN
646 CALL clapmt( .false., m-q, m-q, v2t, ldv2t, iwork )
647 ELSE
648 CALL clapmr( .false., m-q, m-q, v2t, ldv2t, iwork )
649 END IF
650 END IF
651*
652 RETURN
653*
654* End CUNCSD
655*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine cbbcsd(jobu1, jobu2, jobv1t, jobv2t, trans, m, p, q, theta, phi, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, b11d, b11e, b12d, b12e, b21d, b21e, b22d, b22e, rwork, lrwork, info)
CBBCSD
Definition cbbcsd.f:332
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
subroutine clapmr(forwrd, m, n, x, ldx, k)
CLAPMR rearranges rows of a matrix as specified by a permutation vector.
Definition clapmr.f:104
subroutine clapmt(forwrd, m, n, x, ldx, k)
CLAPMT performs a forward or backward permutation of the columns of a matrix.
Definition clapmt.f:104
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine cunbdb(trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, phi, taup1, taup2, tauq1, tauq2, work, lwork, info)
CUNBDB
Definition cunbdb.f:287
recursive subroutine cuncsd(jobu1, jobu2, jobv1t, jobv2t, trans, signs, m, p, q, x11, ldx11, x12, ldx12, x21, ldx21, x22, ldx22, theta, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, work, lwork, rwork, lrwork, iwork, info)
CUNCSD
Definition cuncsd.f:320
subroutine cunglq(m, n, k, a, lda, tau, work, lwork, info)
CUNGLQ
Definition cunglq.f:127
subroutine cungqr(m, n, k, a, lda, tau, work, lwork, info)
CUNGQR
Definition cungqr.f:128
Here is the call graph for this function:
Here is the caller graph for this function: