124      SUBROUTINE cunglq( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
 
  131      INTEGER            INFO, K, LDA, LWORK, M, N
 
  134      COMPLEX            A( LDA, * ), TAU( * ), WORK( * )
 
  141      parameter( zero = ( 0.0e+0, 0.0e+0 ) )
 
  145      INTEGER            I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
 
  146     $                   LWKOPT, NB, NBMIN, NX
 
  157      EXTERNAL           ilaenv, sroundup_lwork
 
  164      nb = ilaenv( 1, 
'CUNGLQ', 
' ', m, n, k, -1 )
 
  165      lwkopt = max( 1, m )*nb
 
  166      work( 1 ) = sroundup_lwork(lwkopt)
 
  167      lquery = ( lwork.EQ.-1 )
 
  170      ELSE IF( n.LT.m ) 
THEN 
  172      ELSE IF( k.LT.0 .OR. k.GT.m ) 
THEN 
  174      ELSE IF( lda.LT.max( 1, m ) ) 
THEN 
  176      ELSE IF( lwork.LT.max( 1, m ) .AND. .NOT.lquery ) 
THEN 
  180         CALL xerbla( 
'CUNGLQ', -info )
 
  182      ELSE IF( lquery ) 
THEN 
  196      IF( nb.GT.1 .AND. nb.LT.k ) 
THEN 
  200         nx = max( 0, ilaenv( 3, 
'CUNGLQ', 
' ', m, n, k, -1 ) )
 
  207            IF( lwork.LT.iws ) 
THEN 
  213               nbmin = max( 2, ilaenv( 2, 
'CUNGLQ', 
' ', m, n, k,
 
  219      IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) 
THEN 
  224         ki = ( ( k-nx-1 ) / nb )*nb
 
  241     $   
CALL cungl2( m-kk, n-kk, k-kk, a( kk+1, kk+1 ), lda,
 
  242     $                tau( kk+1 ), work, iinfo )
 
  248         DO 50 i = ki + 1, 1, -nb
 
  249            ib = min( nb, k-i+1 )
 
  255               CALL clarft( 
'Forward', 
'Rowwise', n-i+1, ib, a( i,
 
  257     $                      lda, tau( i ), work, ldwork )
 
  261               CALL clarfb( 
'Right', 
'Conjugate transpose',
 
  263     $                      
'Rowwise', m-i-ib+1, n-i+1, ib, a( i, i ),
 
  264     $                      lda, work, ldwork, a( i+ib, i ), lda,
 
  265     $                      work( ib+1 ), ldwork )
 
  270            CALL cungl2( ib, n-i+1, ib, a( i, i ), lda, tau( i ),
 
  277               DO 30 l = i, i + ib - 1
 
  284      work( 1 ) = sroundup_lwork(iws)
 
 
subroutine clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
 
recursive subroutine clarft(direct, storev, n, k, v, ldv, tau, t, ldt)
CLARFT forms the triangular factor T of a block reflector H = I - vtvH
 
subroutine cungl2(m, n, k, a, lda, tau, work, info)
CUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (u...
 
subroutine cunglq(m, n, k, a, lda, tau, work, lwork, info)
CUNGLQ