LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cunglq.f
Go to the documentation of this file.
1*> \brief \b CUNGLQ
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CUNGLQ + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cunglq.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cunglq.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cunglq.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CUNGLQ( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, K, LDA, LWORK, M, N
23* ..
24* .. Array Arguments ..
25* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> CUNGLQ generates an M-by-N complex matrix Q with orthonormal rows,
35*> which is defined as the first M rows of a product of K elementary
36*> reflectors of order N
37*>
38*> Q = H(k)**H . . . H(2)**H H(1)**H
39*>
40*> as returned by CGELQF.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows of the matrix Q. M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns of the matrix Q. N >= M.
56*> \endverbatim
57*>
58*> \param[in] K
59*> \verbatim
60*> K is INTEGER
61*> The number of elementary reflectors whose product defines the
62*> matrix Q. M >= K >= 0.
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*> A is COMPLEX array, dimension (LDA,N)
68*> On entry, the i-th row must contain the vector which defines
69*> the elementary reflector H(i), for i = 1,2,...,k, as returned
70*> by CGELQF in the first k rows of its array argument A.
71*> On exit, the M-by-N matrix Q.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*> LDA is INTEGER
77*> The first dimension of the array A. LDA >= max(1,M).
78*> \endverbatim
79*>
80*> \param[in] TAU
81*> \verbatim
82*> TAU is COMPLEX array, dimension (K)
83*> TAU(i) must contain the scalar factor of the elementary
84*> reflector H(i), as returned by CGELQF.
85*> \endverbatim
86*>
87*> \param[out] WORK
88*> \verbatim
89*> WORK is COMPLEX array, dimension (MAX(1,LWORK))
90*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
91*> \endverbatim
92*>
93*> \param[in] LWORK
94*> \verbatim
95*> LWORK is INTEGER
96*> The dimension of the array WORK. LWORK >= max(1,M).
97*> For optimum performance LWORK >= M*NB, where NB is
98*> the optimal blocksize.
99*>
100*> If LWORK = -1, then a workspace query is assumed; the routine
101*> only calculates the optimal size of the WORK array, returns
102*> this value as the first entry of the WORK array, and no error
103*> message related to LWORK is issued by XERBLA.
104*> \endverbatim
105*>
106*> \param[out] INFO
107*> \verbatim
108*> INFO is INTEGER
109*> = 0: successful exit;
110*> < 0: if INFO = -i, the i-th argument has an illegal value
111*> \endverbatim
112*
113* Authors:
114* ========
115*
116*> \author Univ. of Tennessee
117*> \author Univ. of California Berkeley
118*> \author Univ. of Colorado Denver
119*> \author NAG Ltd.
120*
121*> \ingroup unglq
122*
123* =====================================================================
124 SUBROUTINE cunglq( M, N, K, A, LDA, TAU, WORK, LWORK, INFO )
125*
126* -- LAPACK computational routine --
127* -- LAPACK is a software package provided by Univ. of Tennessee, --
128* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
129*
130* .. Scalar Arguments ..
131 INTEGER INFO, K, LDA, LWORK, M, N
132* ..
133* .. Array Arguments ..
134 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
135* ..
136*
137* =====================================================================
138*
139* .. Parameters ..
140 COMPLEX ZERO
141 parameter( zero = ( 0.0e+0, 0.0e+0 ) )
142* ..
143* .. Local Scalars ..
144 LOGICAL LQUERY
145 INTEGER I, IB, IINFO, IWS, J, KI, KK, L, LDWORK,
146 $ LWKOPT, NB, NBMIN, NX
147* ..
148* .. External Subroutines ..
149 EXTERNAL clarfb, clarft, cungl2, xerbla
150* ..
151* .. Intrinsic Functions ..
152 INTRINSIC max, min
153* ..
154* .. External Functions ..
155 INTEGER ILAENV
156 REAL SROUNDUP_LWORK
157 EXTERNAL ilaenv, sroundup_lwork
158* ..
159* .. Executable Statements ..
160*
161* Test the input arguments
162*
163 info = 0
164 nb = ilaenv( 1, 'CUNGLQ', ' ', m, n, k, -1 )
165 lwkopt = max( 1, m )*nb
166 work( 1 ) = sroundup_lwork(lwkopt)
167 lquery = ( lwork.EQ.-1 )
168 IF( m.LT.0 ) THEN
169 info = -1
170 ELSE IF( n.LT.m ) THEN
171 info = -2
172 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
173 info = -3
174 ELSE IF( lda.LT.max( 1, m ) ) THEN
175 info = -5
176 ELSE IF( lwork.LT.max( 1, m ) .AND. .NOT.lquery ) THEN
177 info = -8
178 END IF
179 IF( info.NE.0 ) THEN
180 CALL xerbla( 'CUNGLQ', -info )
181 RETURN
182 ELSE IF( lquery ) THEN
183 RETURN
184 END IF
185*
186* Quick return if possible
187*
188 IF( m.LE.0 ) THEN
189 work( 1 ) = 1
190 RETURN
191 END IF
192*
193 nbmin = 2
194 nx = 0
195 iws = m
196 IF( nb.GT.1 .AND. nb.LT.k ) THEN
197*
198* Determine when to cross over from blocked to unblocked code.
199*
200 nx = max( 0, ilaenv( 3, 'CUNGLQ', ' ', m, n, k, -1 ) )
201 IF( nx.LT.k ) THEN
202*
203* Determine if workspace is large enough for blocked code.
204*
205 ldwork = m
206 iws = ldwork*nb
207 IF( lwork.LT.iws ) THEN
208*
209* Not enough workspace to use optimal NB: reduce NB and
210* determine the minimum value of NB.
211*
212 nb = lwork / ldwork
213 nbmin = max( 2, ilaenv( 2, 'CUNGLQ', ' ', m, n, k,
214 $ -1 ) )
215 END IF
216 END IF
217 END IF
218*
219 IF( nb.GE.nbmin .AND. nb.LT.k .AND. nx.LT.k ) THEN
220*
221* Use blocked code after the last block.
222* The first kk rows are handled by the block method.
223*
224 ki = ( ( k-nx-1 ) / nb )*nb
225 kk = min( k, ki+nb )
226*
227* Set A(kk+1:m,1:kk) to zero.
228*
229 DO 20 j = 1, kk
230 DO 10 i = kk + 1, m
231 a( i, j ) = zero
232 10 CONTINUE
233 20 CONTINUE
234 ELSE
235 kk = 0
236 END IF
237*
238* Use unblocked code for the last or only block.
239*
240 IF( kk.LT.m )
241 $ CALL cungl2( m-kk, n-kk, k-kk, a( kk+1, kk+1 ), lda,
242 $ tau( kk+1 ), work, iinfo )
243*
244 IF( kk.GT.0 ) THEN
245*
246* Use blocked code
247*
248 DO 50 i = ki + 1, 1, -nb
249 ib = min( nb, k-i+1 )
250 IF( i+ib.LE.m ) THEN
251*
252* Form the triangular factor of the block reflector
253* H = H(i) H(i+1) . . . H(i+ib-1)
254*
255 CALL clarft( 'Forward', 'Rowwise', n-i+1, ib, a( i,
256 $ i ),
257 $ lda, tau( i ), work, ldwork )
258*
259* Apply H**H to A(i+ib:m,i:n) from the right
260*
261 CALL clarfb( 'Right', 'Conjugate transpose',
262 $ 'Forward',
263 $ 'Rowwise', m-i-ib+1, n-i+1, ib, a( i, i ),
264 $ lda, work, ldwork, a( i+ib, i ), lda,
265 $ work( ib+1 ), ldwork )
266 END IF
267*
268* Apply H**H to columns i:n of current block
269*
270 CALL cungl2( ib, n-i+1, ib, a( i, i ), lda, tau( i ),
271 $ work,
272 $ iinfo )
273*
274* Set columns 1:i-1 of current block to zero
275*
276 DO 40 j = 1, i - 1
277 DO 30 l = i, i + ib - 1
278 a( l, j ) = zero
279 30 CONTINUE
280 40 CONTINUE
281 50 CONTINUE
282 END IF
283*
284 work( 1 ) = sroundup_lwork(iws)
285 RETURN
286*
287* End of CUNGLQ
288*
289 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
CLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition clarfb.f:195
recursive subroutine clarft(direct, storev, n, k, v, ldv, tau, t, ldt)
CLARFT forms the triangular factor T of a block reflector H = I - vtvH
Definition clarft.f:162
subroutine cungl2(m, n, k, a, lda, tau, work, info)
CUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (u...
Definition cungl2.f:111
subroutine cunglq(m, n, k, a, lda, tau, work, lwork, info)
CUNGLQ
Definition cunglq.f:125