LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
cungl2.f
Go to the documentation of this file.
1*> \brief \b CUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (unblocked algorithm).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download CUNGL2 + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/cungl2.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/cungl2.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/cungl2.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE CUNGL2( M, N, K, A, LDA, TAU, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, K, LDA, M, N
23* ..
24* .. Array Arguments ..
25* COMPLEX A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> CUNGL2 generates an m-by-n complex matrix Q with orthonormal rows,
35*> which is defined as the first m rows of a product of k elementary
36*> reflectors of order n
37*>
38*> Q = H(k)**H . . . H(2)**H H(1)**H
39*>
40*> as returned by CGELQF.
41*> \endverbatim
42*
43* Arguments:
44* ==========
45*
46*> \param[in] M
47*> \verbatim
48*> M is INTEGER
49*> The number of rows of the matrix Q. M >= 0.
50*> \endverbatim
51*>
52*> \param[in] N
53*> \verbatim
54*> N is INTEGER
55*> The number of columns of the matrix Q. N >= M.
56*> \endverbatim
57*>
58*> \param[in] K
59*> \verbatim
60*> K is INTEGER
61*> The number of elementary reflectors whose product defines the
62*> matrix Q. M >= K >= 0.
63*> \endverbatim
64*>
65*> \param[in,out] A
66*> \verbatim
67*> A is COMPLEX array, dimension (LDA,N)
68*> On entry, the i-th row must contain the vector which defines
69*> the elementary reflector H(i), for i = 1,2,...,k, as returned
70*> by CGELQF in the first k rows of its array argument A.
71*> On exit, the m by n matrix Q.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*> LDA is INTEGER
77*> The first dimension of the array A. LDA >= max(1,M).
78*> \endverbatim
79*>
80*> \param[in] TAU
81*> \verbatim
82*> TAU is COMPLEX array, dimension (K)
83*> TAU(i) must contain the scalar factor of the elementary
84*> reflector H(i), as returned by CGELQF.
85*> \endverbatim
86*>
87*> \param[out] WORK
88*> \verbatim
89*> WORK is COMPLEX array, dimension (M)
90*> \endverbatim
91*>
92*> \param[out] INFO
93*> \verbatim
94*> INFO is INTEGER
95*> = 0: successful exit
96*> < 0: if INFO = -i, the i-th argument has an illegal value
97*> \endverbatim
98*
99* Authors:
100* ========
101*
102*> \author Univ. of Tennessee
103*> \author Univ. of California Berkeley
104*> \author Univ. of Colorado Denver
105*> \author NAG Ltd.
106*
107*> \ingroup ungl2
108*
109* =====================================================================
110 SUBROUTINE cungl2( M, N, K, A, LDA, TAU, WORK, INFO )
111*
112* -- LAPACK computational routine --
113* -- LAPACK is a software package provided by Univ. of Tennessee, --
114* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
115*
116* .. Scalar Arguments ..
117 INTEGER INFO, K, LDA, M, N
118* ..
119* .. Array Arguments ..
120 COMPLEX A( LDA, * ), TAU( * ), WORK( * )
121* ..
122*
123* =====================================================================
124*
125* .. Parameters ..
126 COMPLEX ONE, ZERO
127 parameter( one = ( 1.0e+0, 0.0e+0 ),
128 $ zero = ( 0.0e+0, 0.0e+0 ) )
129* ..
130* .. Local Scalars ..
131 INTEGER I, J, L
132* ..
133* .. External Subroutines ..
134 EXTERNAL clacgv, clarf1f, cscal, xerbla
135* ..
136* .. Intrinsic Functions ..
137 INTRINSIC conjg, max
138* ..
139* .. Executable Statements ..
140*
141* Test the input arguments
142*
143 info = 0
144 IF( m.LT.0 ) THEN
145 info = -1
146 ELSE IF( n.LT.m ) THEN
147 info = -2
148 ELSE IF( k.LT.0 .OR. k.GT.m ) THEN
149 info = -3
150 ELSE IF( lda.LT.max( 1, m ) ) THEN
151 info = -5
152 END IF
153 IF( info.NE.0 ) THEN
154 CALL xerbla( 'CUNGL2', -info )
155 RETURN
156 END IF
157*
158* Quick return if possible
159*
160 IF( m.LE.0 )
161 $ RETURN
162*
163 IF( k.LT.m ) THEN
164*
165* Initialise rows k+1:m to rows of the unit matrix
166*
167 DO 20 j = 1, n
168 DO 10 l = k + 1, m
169 a( l, j ) = zero
170 10 CONTINUE
171 IF( j.GT.k .AND. j.LE.m )
172 $ a( j, j ) = one
173 20 CONTINUE
174 END IF
175*
176 DO 40 i = k, 1, -1
177*
178* Apply H(i)**H to A(i:m,i:n) from the right
179*
180 IF( i.LT.n ) THEN
181 CALL clacgv( n-i, a( i, i+1 ), lda )
182 IF( i.LT.m ) THEN
183 CALL clarf1f( 'Right', m-i, n-i+1, a( i, i ), lda,
184 $ conjg( tau( i ) ), a( i+1, i ), lda,
185 $ work )
186 END IF
187 CALL cscal( n-i, -tau( i ), a( i, i+1 ), lda )
188 CALL clacgv( n-i, a( i, i+1 ), lda )
189 END IF
190 a( i, i ) = one - conjg( tau( i ) )
191*
192* Set A(i,1:i-1,i) to zero
193*
194 DO 30 l = 1, i - 1
195 a( i, l ) = zero
196 30 CONTINUE
197 40 CONTINUE
198 RETURN
199*
200* End of CUNGL2
201*
202 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine clarf1f(side, m, n, v, incv, tau, c, ldc, work)
CLARF1F applies an elementary reflector to a general rectangular
Definition clarf1f.f:126
subroutine clacgv(n, x, incx)
CLACGV conjugates a complex vector.
Definition clacgv.f:72
subroutine cscal(n, ca, cx, incx)
CSCAL
Definition cscal.f:78
subroutine cungl2(m, n, k, a, lda, tau, work, info)
CUNGL2 generates all or part of the unitary matrix Q from an LQ factorization determined by cgelqf (u...
Definition cungl2.f:111