LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cqrt05()

subroutine cqrt05 ( integer  m,
integer  n,
integer  l,
integer  nb,
real, dimension(6)  result 
)

CQRT05

Purpose:
 CQRT05 tests CTPQRT and CTPMQRT.
Parameters
[in]M
          M is INTEGER
          Number of rows in lower part of the test matrix.
[in]N
          N is INTEGER
          Number of columns in test matrix.
[in]L
          L is INTEGER
          The number of rows of the upper trapezoidal part the
          lower test matrix.  0 <= L <= M.
[in]NB
          NB is INTEGER
          Block size of test matrix.  NB <= N.
[out]RESULT
          RESULT is REAL array, dimension (6)
          Results of each of the six tests below.

          RESULT(1) = | A - Q R |
          RESULT(2) = | I - Q^H Q |
          RESULT(3) = | Q C - Q C |
          RESULT(4) = | Q^H C - Q^H C |
          RESULT(5) = | C Q - C Q |
          RESULT(6) = | C Q^H - C Q^H |
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 79 of file cqrt05.f.

80 IMPLICIT NONE
81*
82* -- LAPACK test routine --
83* -- LAPACK is a software package provided by Univ. of Tennessee, --
84* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
85*
86* .. Scalar Arguments ..
87 INTEGER LWORK, M, N, L, NB, LDT
88* .. Return values ..
89 REAL RESULT(6)
90*
91* =====================================================================
92*
93* ..
94* .. Local allocatable arrays
95 COMPLEX, ALLOCATABLE :: AF(:,:), Q(:,:),
96 $ R(:,:), WORK( : ), T(:,:),
97 $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
98 REAL, ALLOCATABLE :: RWORK(:)
99*
100* .. Parameters ..
101 REAL ZERO
102 COMPLEX ONE, CZERO
103 parameter( zero = 0.0, one = (1.0,0.0), czero=(0.0,0.0) )
104* ..
105* .. Local Scalars ..
106 INTEGER INFO, J, K, M2, NP1
107 REAL ANORM, EPS, RESID, CNORM, DNORM
108* ..
109* .. Local Arrays ..
110 INTEGER ISEED( 4 )
111* ..
112* .. External Functions ..
113 REAL SLAMCH
114 REAL CLANGE, CLANSY
115 LOGICAL LSAME
116 EXTERNAL slamch, clange, clansy, lsame
117* ..
118* .. Data statements ..
119 DATA iseed / 1988, 1989, 1990, 1991 /
120*
121 eps = slamch( 'Epsilon' )
122 k = n
123 m2 = m+n
124 IF( m.GT.0 ) THEN
125 np1 = n+1
126 ELSE
127 np1 = 1
128 END IF
129 lwork = m2*m2*nb
130*
131* Dynamically allocate all arrays
132*
133 ALLOCATE(a(m2,n),af(m2,n),q(m2,m2),r(m2,m2),rwork(m2),
134 $ work(lwork),t(nb,n),c(m2,n),cf(m2,n),
135 $ d(n,m2),df(n,m2) )
136*
137* Put random stuff into A
138*
139 ldt=nb
140 CALL claset( 'Full', m2, n, czero, czero, a, m2 )
141 CALL claset( 'Full', nb, n, czero, czero, t, nb )
142 DO j=1,n
143 CALL clarnv( 2, iseed, j, a( 1, j ) )
144 END DO
145 IF( m.GT.0 ) THEN
146 DO j=1,n
147 CALL clarnv( 2, iseed, m-l, a( min(n+m,n+1), j ) )
148 END DO
149 END IF
150 IF( l.GT.0 ) THEN
151 DO j=1,n
152 CALL clarnv( 2, iseed, min(j,l), a( min(n+m,n+m-l+1), j ) )
153 END DO
154 END IF
155*
156* Copy the matrix A to the array AF.
157*
158 CALL clacpy( 'Full', m2, n, a, m2, af, m2 )
159*
160* Factor the matrix A in the array AF.
161*
162 CALL ctpqrt( m,n,l,nb,af,m2,af(np1,1),m2,t,ldt,work,info)
163*
164* Generate the (M+N)-by-(M+N) matrix Q by applying H to I
165*
166 CALL claset( 'Full', m2, m2, czero, one, q, m2 )
167 CALL cgemqrt( 'R', 'N', m2, m2, k, nb, af, m2, t, ldt, q, m2,
168 $ work, info )
169*
170* Copy R
171*
172 CALL claset( 'Full', m2, n, czero, czero, r, m2 )
173 CALL clacpy( 'Upper', m2, n, af, m2, r, m2 )
174*
175* Compute |R - Q'*A| / |A| and store in RESULT(1)
176*
177 CALL cgemm( 'C', 'N', m2, n, m2, -one, q, m2, a, m2, one, r, m2 )
178 anorm = clange( '1', m2, n, a, m2, rwork )
179 resid = clange( '1', m2, n, r, m2, rwork )
180 IF( anorm.GT.zero ) THEN
181 result( 1 ) = resid / (eps*anorm*max(1,m2))
182 ELSE
183 result( 1 ) = zero
184 END IF
185*
186* Compute |I - Q'*Q| and store in RESULT(2)
187*
188 CALL claset( 'Full', m2, m2, czero, one, r, m2 )
189 CALL cherk( 'U', 'C', m2, m2, real(-one), q, m2, real(one),
190 $ r, m2 )
191 resid = clansy( '1', 'Upper', m2, r, m2, rwork )
192 result( 2 ) = resid / (eps*max(1,m2))
193*
194* Generate random m-by-n matrix C and a copy CF
195*
196 DO j=1,n
197 CALL clarnv( 2, iseed, m2, c( 1, j ) )
198 END DO
199 cnorm = clange( '1', m2, n, c, m2, rwork)
200 CALL clacpy( 'Full', m2, n, c, m2, cf, m2 )
201*
202* Apply Q to C as Q*C
203*
204 CALL ctpmqrt( 'L','N', m,n,k,l,nb,af(np1,1),m2,t,ldt,cf,m2,
205 $ cf(np1,1),m2,work,info)
206*
207* Compute |Q*C - Q*C| / |C|
208*
209 CALL cgemm( 'N', 'N', m2, n, m2, -one, q, m2, c, m2, one, cf, m2 )
210 resid = clange( '1', m2, n, cf, m2, rwork )
211 IF( cnorm.GT.zero ) THEN
212 result( 3 ) = resid / (eps*max(1,m2)*cnorm)
213 ELSE
214 result( 3 ) = zero
215 END IF
216*
217* Copy C into CF again
218*
219 CALL clacpy( 'Full', m2, n, c, m2, cf, m2 )
220*
221* Apply Q to C as QT*C
222*
223 CALL ctpmqrt( 'L','C',m,n,k,l,nb,af(np1,1),m2,t,ldt,cf,m2,
224 $ cf(np1,1),m2,work,info)
225*
226* Compute |QT*C - QT*C| / |C|
227*
228 CALL cgemm('C','N',m2,n,m2,-one,q,m2,c,m2,one,cf,m2)
229 resid = clange( '1', m2, n, cf, m2, rwork )
230 IF( cnorm.GT.zero ) THEN
231 result( 4 ) = resid / (eps*max(1,m2)*cnorm)
232 ELSE
233 result( 4 ) = zero
234 END IF
235*
236* Generate random n-by-m matrix D and a copy DF
237*
238 DO j=1,m2
239 CALL clarnv( 2, iseed, n, d( 1, j ) )
240 END DO
241 dnorm = clange( '1', n, m2, d, n, rwork)
242 CALL clacpy( 'Full', n, m2, d, n, df, n )
243*
244* Apply Q to D as D*Q
245*
246 CALL ctpmqrt('R','N',n,m,n,l,nb,af(np1,1),m2,t,ldt,df,n,
247 $ df(1,np1),n,work,info)
248*
249* Compute |D*Q - D*Q| / |D|
250*
251 CALL cgemm('N','N',n,m2,m2,-one,d,n,q,m2,one,df,n)
252 resid = clange('1',n, m2,df,n,rwork )
253 IF( cnorm.GT.zero ) THEN
254 result( 5 ) = resid / (eps*max(1,m2)*dnorm)
255 ELSE
256 result( 5 ) = zero
257 END IF
258*
259* Copy D into DF again
260*
261 CALL clacpy('Full',n,m2,d,n,df,n )
262*
263* Apply Q to D as D*QT
264*
265 CALL ctpmqrt('R','C',n,m,n,l,nb,af(np1,1),m2,t,ldt,df,n,
266 $ df(1,np1),n,work,info)
267
268*
269* Compute |D*QT - D*QT| / |D|
270*
271 CALL cgemm( 'N', 'C', n, m2, m2, -one, d, n, q, m2, one, df, n )
272 resid = clange( '1', n, m2, df, n, rwork )
273 IF( cnorm.GT.zero ) THEN
274 result( 6 ) = resid / (eps*max(1,m2)*dnorm)
275 ELSE
276 result( 6 ) = zero
277 END IF
278*
279* Deallocate all arrays
280*
281 DEALLOCATE ( a, af, q, r, rwork, work, t, c, d, cf, df)
282 RETURN
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
subroutine cgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
CGEMQRT
Definition cgemqrt.f:168
subroutine cherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
CHERK
Definition cherk.f:173
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:115
real function clansy(norm, uplo, n, a, lda, work)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clansy.f:123
subroutine clarnv(idist, iseed, n, x)
CLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition clarnv.f:99
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ctpmqrt(side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
CTPMQRT
Definition ctpmqrt.f:216
subroutine ctpqrt(m, n, l, nb, a, lda, b, ldb, t, ldt, work, info)
CTPQRT
Definition ctpqrt.f:189
Here is the call graph for this function:
Here is the caller graph for this function: