LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctpqrt()

subroutine ctpqrt ( integer m,
integer n,
integer l,
integer nb,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldt, * ) t,
integer ldt,
complex, dimension( * ) work,
integer info )

CTPQRT

Download CTPQRT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> CTPQRT computes a blocked QR factorization of a complex
!>  matrix C, which is composed of a
!> triangular block A and pentagonal block B, using the compact
!> WY representation for Q.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix B.
!>          M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix B, and the order of the
!>          triangular matrix A.
!>          N >= 0.
!> 
[in]L
!>          L is INTEGER
!>          The number of rows of the upper trapezoidal part of B.
!>          MIN(M,N) >= L >= 0.  See Further Details.
!> 
[in]NB
!>          NB is INTEGER
!>          The block size to be used in the blocked QR.  N >= NB >= 1.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,N)
!>          On entry, the upper triangular N-by-N matrix A.
!>          On exit, the elements on and above the diagonal of the array
!>          contain the upper triangular matrix R.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB,N)
!>          On entry, the pentagonal M-by-N matrix B.  The first M-L rows
!>          are rectangular, and the last L rows are upper trapezoidal.
!>          On exit, B contains the pentagonal matrix V.  See Further Details.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!> 
[out]T
!>          T is COMPLEX array, dimension (LDT,N)
!>          The upper triangular block reflectors stored in compact form
!>          as a sequence of upper triangular blocks.  See Further Details.
!> 
[in]LDT
!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= NB.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (NB*N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The input matrix C is a (N+M)-by-N matrix
!>
!>               C = [ A ]
!>                   [ B ]
!>
!>  where A is an upper triangular N-by-N matrix, and B is M-by-N pentagonal
!>  matrix consisting of a (M-L)-by-N rectangular matrix B1 on top of a L-by-N
!>  upper trapezoidal matrix B2:
!>
!>               B = [ B1 ]  <- (M-L)-by-N rectangular
!>                   [ B2 ]  <-     L-by-N upper trapezoidal.
!>
!>  The upper trapezoidal matrix B2 consists of the first L rows of a
!>  N-by-N upper triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
!>  B is rectangular M-by-N; if M=L=N, B is upper triangular.
!>
!>  The matrix W stores the elementary reflectors H(i) in the i-th column
!>  below the diagonal (of A) in the (N+M)-by-N input matrix C
!>
!>               C = [ A ]  <- upper triangular N-by-N
!>                   [ B ]  <- M-by-N pentagonal
!>
!>  so that W can be represented as
!>
!>               W = [ I ]  <- identity, N-by-N
!>                   [ V ]  <- M-by-N, same form as B.
!>
!>  Thus, all of information needed for W is contained on exit in B, which
!>  we call V above.  Note that V has the same form as B; that is,
!>
!>               V = [ V1 ] <- (M-L)-by-N rectangular
!>                   [ V2 ] <-     L-by-N upper trapezoidal.
!>
!>  The columns of V represent the vectors which define the H(i)'s.
!>
!>  The number of blocks is B = ceiling(N/NB), where each
!>  block is of order NB except for the last block, which is of order
!>  IB = N - (B-1)*NB.  For each of the B blocks, a upper triangular block
!>  reflector factor is computed: T1, T2, ..., TB.  The NB-by-NB (and IB-by-IB
!>  for the last block) T's are stored in the NB-by-N matrix T as
!>
!>               T = [T1 T2 ... TB].
!> 

Definition at line 185 of file ctpqrt.f.

187*
188* -- LAPACK computational routine --
189* -- LAPACK is a software package provided by Univ. of Tennessee, --
190* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
191*
192* .. Scalar Arguments ..
193 INTEGER INFO, LDA, LDB, LDT, N, M, L, NB
194* ..
195* .. Array Arguments ..
196 COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
197* ..
198*
199* =====================================================================
200*
201* ..
202* .. Local Scalars ..
203 INTEGER I, IB, LB, MB, IINFO
204* ..
205* .. External Subroutines ..
206 EXTERNAL ctpqrt2, ctprfb, xerbla
207* ..
208* .. Executable Statements ..
209*
210* Test the input arguments
211*
212 info = 0
213 IF( m.LT.0 ) THEN
214 info = -1
215 ELSE IF( n.LT.0 ) THEN
216 info = -2
217 ELSE IF( l.LT.0 .OR. (l.GT.min(m,n) .AND. min(m,n).GE.0)) THEN
218 info = -3
219 ELSE IF( nb.LT.1 .OR. (nb.GT.n .AND. n.GT.0)) THEN
220 info = -4
221 ELSE IF( lda.LT.max( 1, n ) ) THEN
222 info = -6
223 ELSE IF( ldb.LT.max( 1, m ) ) THEN
224 info = -8
225 ELSE IF( ldt.LT.nb ) THEN
226 info = -10
227 END IF
228 IF( info.NE.0 ) THEN
229 CALL xerbla( 'CTPQRT', -info )
230 RETURN
231 END IF
232*
233* Quick return if possible
234*
235 IF( m.EQ.0 .OR. n.EQ.0 ) RETURN
236*
237 DO i = 1, n, nb
238*
239* Compute the QR factorization of the current block
240*
241 ib = min( n-i+1, nb )
242 mb = min( m-l+i+ib-1, m )
243 IF( i.GE.l ) THEN
244 lb = 0
245 ELSE
246 lb = mb-m+l-i+1
247 END IF
248*
249 CALL ctpqrt2( mb, ib, lb, a(i,i), lda, b( 1, i ), ldb,
250 $ t(1, i ), ldt, iinfo )
251*
252* Update by applying H**H to B(:,I+IB:N) from the left
253*
254 IF( i+ib.LE.n ) THEN
255 CALL ctprfb( 'L', 'C', 'F', 'C', mb, n-i-ib+1, ib, lb,
256 $ b( 1, i ), ldb, t( 1, i ), ldt,
257 $ a( i, i+ib ), lda, b( 1, i+ib ), ldb,
258 $ work, ib )
259 END IF
260 END DO
261 RETURN
262*
263* End of CTPQRT
264*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ctpqrt2(m, n, l, a, lda, b, ldb, t, ldt, info)
CTPQRT2 computes a QR factorization of a real or complex "triangular-pentagonal" matrix,...
Definition ctpqrt2.f:171
subroutine ctprfb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
CTPRFB applies a complex "triangular-pentagonal" block reflector to a complex matrix,...
Definition ctprfb.f:249
Here is the call graph for this function:
Here is the caller graph for this function: