LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ strcon()

subroutine strcon ( character norm,
character uplo,
character diag,
integer n,
real, dimension( lda, * ) a,
integer lda,
real rcond,
real, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

STRCON

Download STRCON + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> STRCON estimates the reciprocal of the condition number of a
!> triangular matrix A, in either the 1-norm or the infinity-norm.
!>
!> The norm of A is computed and an estimate is obtained for
!> norm(inv(A)), then the reciprocal of the condition number is
!> computed as
!>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
!> 
Parameters
[in]NORM
!>          NORM is CHARACTER*1
!>          Specifies whether the 1-norm condition number or the
!>          infinity-norm condition number is required:
!>          = '1' or 'O':  1-norm;
!>          = 'I':         Infinity-norm.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  A is upper triangular;
!>          = 'L':  A is lower triangular.
!> 
[in]DIAG
!>          DIAG is CHARACTER*1
!>          = 'N':  A is non-unit triangular;
!>          = 'U':  A is unit triangular.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.
!> 
[in]A
!>          A is REAL array, dimension (LDA,N)
!>          The triangular matrix A.  If UPLO = 'U', the leading N-by-N
!>          upper triangular part of the array A contains the upper
!>          triangular matrix, and the strictly lower triangular part of
!>          A is not referenced.  If UPLO = 'L', the leading N-by-N lower
!>          triangular part of the array A contains the lower triangular
!>          matrix, and the strictly upper triangular part of A is not
!>          referenced.  If DIAG = 'U', the diagonal elements of A are
!>          also not referenced and are assumed to be 1.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>          The reciprocal of the condition number of the matrix A,
!>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
!> 
[out]WORK
!>          WORK is REAL array, dimension (3*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 133 of file strcon.f.

135*
136* -- LAPACK computational routine --
137* -- LAPACK is a software package provided by Univ. of Tennessee, --
138* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
139*
140* .. Scalar Arguments ..
141 CHARACTER DIAG, NORM, UPLO
142 INTEGER INFO, LDA, N
143 REAL RCOND
144* ..
145* .. Array Arguments ..
146 INTEGER IWORK( * )
147 REAL A( LDA, * ), WORK( * )
148* ..
149*
150* =====================================================================
151*
152* .. Parameters ..
153 REAL ONE, ZERO
154 parameter( one = 1.0e+0, zero = 0.0e+0 )
155* ..
156* .. Local Scalars ..
157 LOGICAL NOUNIT, ONENRM, UPPER
158 CHARACTER NORMIN
159 INTEGER IX, KASE, KASE1
160 REAL AINVNM, ANORM, SCALE, SMLNUM, XNORM
161* ..
162* .. Local Arrays ..
163 INTEGER ISAVE( 3 )
164* ..
165* .. External Functions ..
166 LOGICAL LSAME
167 INTEGER ISAMAX
168 REAL SLAMCH, SLANTR
169 EXTERNAL lsame, isamax, slamch, slantr
170* ..
171* .. External Subroutines ..
172 EXTERNAL slacn2, slatrs, srscl, xerbla
173* ..
174* .. Intrinsic Functions ..
175 INTRINSIC abs, max, real
176* ..
177* .. Executable Statements ..
178*
179* Test the input parameters.
180*
181 info = 0
182 upper = lsame( uplo, 'U' )
183 onenrm = norm.EQ.'1' .OR. lsame( norm, 'O' )
184 nounit = lsame( diag, 'N' )
185*
186 IF( .NOT.onenrm .AND. .NOT.lsame( norm, 'I' ) ) THEN
187 info = -1
188 ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
189 info = -2
190 ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag, 'U' ) ) THEN
191 info = -3
192 ELSE IF( n.LT.0 ) THEN
193 info = -4
194 ELSE IF( lda.LT.max( 1, n ) ) THEN
195 info = -6
196 END IF
197 IF( info.NE.0 ) THEN
198 CALL xerbla( 'STRCON', -info )
199 RETURN
200 END IF
201*
202* Quick return if possible
203*
204 IF( n.EQ.0 ) THEN
205 rcond = one
206 RETURN
207 END IF
208*
209 rcond = zero
210 smlnum = slamch( 'Safe minimum' )*real( max( 1, n ) )
211*
212* Compute the norm of the triangular matrix A.
213*
214 anorm = slantr( norm, uplo, diag, n, n, a, lda, work )
215*
216* Continue only if ANORM > 0.
217*
218 IF( anorm.GT.zero ) THEN
219*
220* Estimate the norm of the inverse of A.
221*
222 ainvnm = zero
223 normin = 'N'
224 IF( onenrm ) THEN
225 kase1 = 1
226 ELSE
227 kase1 = 2
228 END IF
229 kase = 0
230 10 CONTINUE
231 CALL slacn2( n, work( n+1 ), work, iwork, ainvnm, kase,
232 $ isave )
233 IF( kase.NE.0 ) THEN
234 IF( kase.EQ.kase1 ) THEN
235*
236* Multiply by inv(A).
237*
238 CALL slatrs( uplo, 'No transpose', diag, normin, n, a,
239 $ lda, work, scale, work( 2*n+1 ), info )
240 ELSE
241*
242* Multiply by inv(A**T).
243*
244 CALL slatrs( uplo, 'Transpose', diag, normin, n, a,
245 $ lda,
246 $ work, scale, work( 2*n+1 ), info )
247 END IF
248 normin = 'Y'
249*
250* Multiply by 1/SCALE if doing so will not cause overflow.
251*
252 IF( scale.NE.one ) THEN
253 ix = isamax( n, work, 1 )
254 xnorm = abs( work( ix ) )
255 IF( scale.LT.xnorm*smlnum .OR. scale.EQ.zero )
256 $ GO TO 20
257 CALL srscl( n, scale, work, 1 )
258 END IF
259 GO TO 10
260 END IF
261*
262* Compute the estimate of the reciprocal condition number.
263*
264 IF( ainvnm.NE.zero )
265 $ rcond = ( one / anorm ) / ainvnm
266 END IF
267*
268 20 CONTINUE
269 RETURN
270*
271* End of STRCON
272*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function isamax(n, sx, incx)
ISAMAX
Definition isamax.f:71
subroutine slacn2(n, v, x, isgn, est, kase, isave)
SLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition slacn2.f:134
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slantr(norm, uplo, diag, m, n, a, lda, work)
SLANTR returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition slantr.f:140
subroutine slatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
SLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
Definition slatrs.f:237
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine srscl(n, sa, sx, incx)
SRSCL multiplies a vector by the reciprocal of a real scalar.
Definition srscl.f:82
Here is the call graph for this function:
Here is the caller graph for this function: