135 SUBROUTINE strcon( NORM, UPLO, DIAG, N, A, LDA, RCOND, WORK,
143 CHARACTER DIAG, NORM, UPLO
149 REAL A( LDA, * ), WORK( * )
156 parameter( one = 1.0e+0, zero = 0.0e+0 )
159 LOGICAL NOUNIT, ONENRM, UPPER
161 INTEGER IX, KASE, KASE1
162 REAL AINVNM, ANORM, SCALE, SMLNUM, XNORM
171 EXTERNAL lsame, isamax, slamch, slantr
177 INTRINSIC abs, max, real
184 upper = lsame( uplo,
'U' )
185 onenrm = norm.EQ.
'1' .OR. lsame( norm,
'O' )
186 nounit = lsame( diag,
'N' )
188 IF( .NOT.onenrm .AND. .NOT.lsame( norm,
'I' ) )
THEN
190 ELSE IF( .NOT.upper .AND. .NOT.lsame( uplo,
'L' ) )
THEN
192 ELSE IF( .NOT.nounit .AND. .NOT.lsame( diag,
'U' ) )
THEN
194 ELSE IF( n.LT.0 )
THEN
196 ELSE IF( lda.LT.max( 1, n ) )
THEN
200 CALL xerbla(
'STRCON', -info )
212 smlnum = slamch(
'Safe minimum' )*real( max( 1, n ) )
216 anorm = slantr( norm, uplo, diag, n, n, a, lda, work )
220 IF( anorm.GT.zero )
THEN
233 CALL slacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
235 IF( kase.EQ.kase1 )
THEN
239 CALL slatrs( uplo,
'No transpose', diag, normin, n, a,
240 $ lda, work, scale, work( 2*n+1 ), info )
245 CALL slatrs( uplo,
'Transpose', diag, normin, n, a, lda,
246 $ work, scale, work( 2*n+1 ), info )
252 IF( scale.NE.one )
THEN
253 ix = isamax( n, work, 1 )
254 xnorm = abs( work( ix ) )
255 IF( scale.LT.xnorm*smlnum .OR. scale.EQ.zero )
257 CALL srscl( n, scale, work, 1 )
265 $ rcond = ( one / anorm ) / ainvnm
subroutine xerbla(srname, info)
subroutine slacn2(n, v, x, isgn, est, kase, isave)
SLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
subroutine slatrs(uplo, trans, diag, normin, n, a, lda, x, scale, cnorm, info)
SLATRS solves a triangular system of equations with the scale factor set to prevent overflow.
subroutine srscl(n, sa, sx, incx)
SRSCL multiplies a vector by the reciprocal of a real scalar.
subroutine strcon(norm, uplo, diag, n, a, lda, rcond, work, iwork, info)
STRCON