LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlanhs()

double precision function dlanhs ( character norm,
integer n,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( * ) work )

DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.

Download DLANHS + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DLANHS  returns the value of the one norm,  or the Frobenius norm, or
!> the  infinity norm,  or the  element of  largest absolute value  of a
!> Hessenberg matrix A.
!> 
Returns
DLANHS
!>
!>    DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
!>             (
!>             ( norm1(A),         NORM = '1', 'O' or 'o'
!>             (
!>             ( normI(A),         NORM = 'I' or 'i'
!>             (
!>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
!>
!> where  norm1  denotes the  one norm of a matrix (maximum column sum),
!> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
!> normF  denotes the  Frobenius norm of a matrix (square root of sum of
!> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
!> 
Parameters
[in]NORM
!>          NORM is CHARACTER*1
!>          Specifies the value to be returned in DLANHS as described
!>          above.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A.  N >= 0.  When N = 0, DLANHS is
!>          set to zero.
!> 
[in]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          The n by n upper Hessenberg matrix A; the part of A below the
!>          first sub-diagonal is not referenced.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(N,1).
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
!>          where LWORK >= N when NORM = 'I'; otherwise, WORK is not
!>          referenced.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 105 of file dlanhs.f.

106*
107* -- LAPACK auxiliary routine --
108* -- LAPACK is a software package provided by Univ. of Tennessee, --
109* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
110*
111* .. Scalar Arguments ..
112 CHARACTER NORM
113 INTEGER LDA, N
114* ..
115* .. Array Arguments ..
116 DOUBLE PRECISION A( LDA, * ), WORK( * )
117* ..
118*
119* =====================================================================
120*
121* .. Parameters ..
122 DOUBLE PRECISION ONE, ZERO
123 parameter( one = 1.0d+0, zero = 0.0d+0 )
124* ..
125* .. Local Scalars ..
126 INTEGER I, J
127 DOUBLE PRECISION SCALE, SUM, VALUE
128* ..
129* .. External Subroutines ..
130 EXTERNAL dlassq
131* ..
132* .. External Functions ..
133 LOGICAL LSAME, DISNAN
134 EXTERNAL lsame, disnan
135* ..
136* .. Intrinsic Functions ..
137 INTRINSIC abs, min, sqrt
138* ..
139* .. Executable Statements ..
140*
141 IF( n.EQ.0 ) THEN
142 VALUE = zero
143 ELSE IF( lsame( norm, 'M' ) ) THEN
144*
145* Find max(abs(A(i,j))).
146*
147 VALUE = zero
148 DO 20 j = 1, n
149 DO 10 i = 1, min( n, j+1 )
150 sum = abs( a( i, j ) )
151 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
152 10 CONTINUE
153 20 CONTINUE
154 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
155*
156* Find norm1(A).
157*
158 VALUE = zero
159 DO 40 j = 1, n
160 sum = zero
161 DO 30 i = 1, min( n, j+1 )
162 sum = sum + abs( a( i, j ) )
163 30 CONTINUE
164 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
165 40 CONTINUE
166 ELSE IF( lsame( norm, 'I' ) ) THEN
167*
168* Find normI(A).
169*
170 DO 50 i = 1, n
171 work( i ) = zero
172 50 CONTINUE
173 DO 70 j = 1, n
174 DO 60 i = 1, min( n, j+1 )
175 work( i ) = work( i ) + abs( a( i, j ) )
176 60 CONTINUE
177 70 CONTINUE
178 VALUE = zero
179 DO 80 i = 1, n
180 sum = work( i )
181 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
182 80 CONTINUE
183 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
184 $ ( lsame( norm, 'E' ) ) ) THEN
185*
186* Find normF(A).
187*
188 scale = zero
189 sum = one
190 DO 90 j = 1, n
191 CALL dlassq( min( n, j+1 ), a( 1, j ), 1, scale, sum )
192 90 CONTINUE
193 VALUE = scale*sqrt( sum )
194 END IF
195*
196 dlanhs = VALUE
197 RETURN
198*
199* End of DLANHS
200*
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function dlanhs(norm, n, a, lda, work)
DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlanhs.f:106
subroutine dlassq(n, x, incx, scale, sumsq)
DLASSQ updates a sum of squares represented in scaled form.
Definition dlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: