LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dlanhs.f
Go to the documentation of this file.
1*> \brief \b DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of an upper Hessenberg matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DLANHS + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlanhs.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlanhs.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlanhs.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* DOUBLE PRECISION FUNCTION DLANHS( NORM, N, A, LDA, WORK )
20*
21* .. Scalar Arguments ..
22* CHARACTER NORM
23* INTEGER LDA, N
24* ..
25* .. Array Arguments ..
26* DOUBLE PRECISION A( LDA, * ), WORK( * )
27* ..
28*
29*
30*> \par Purpose:
31* =============
32*>
33*> \verbatim
34*>
35*> DLANHS returns the value of the one norm, or the Frobenius norm, or
36*> the infinity norm, or the element of largest absolute value of a
37*> Hessenberg matrix A.
38*> \endverbatim
39*>
40*> \return DLANHS
41*> \verbatim
42*>
43*> DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm'
44*> (
45*> ( norm1(A), NORM = '1', 'O' or 'o'
46*> (
47*> ( normI(A), NORM = 'I' or 'i'
48*> (
49*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
50*>
51*> where norm1 denotes the one norm of a matrix (maximum column sum),
52*> normI denotes the infinity norm of a matrix (maximum row sum) and
53*> normF denotes the Frobenius norm of a matrix (square root of sum of
54*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
55*> \endverbatim
56*
57* Arguments:
58* ==========
59*
60*> \param[in] NORM
61*> \verbatim
62*> NORM is CHARACTER*1
63*> Specifies the value to be returned in DLANHS as described
64*> above.
65*> \endverbatim
66*>
67*> \param[in] N
68*> \verbatim
69*> N is INTEGER
70*> The order of the matrix A. N >= 0. When N = 0, DLANHS is
71*> set to zero.
72*> \endverbatim
73*>
74*> \param[in] A
75*> \verbatim
76*> A is DOUBLE PRECISION array, dimension (LDA,N)
77*> The n by n upper Hessenberg matrix A; the part of A below the
78*> first sub-diagonal is not referenced.
79*> \endverbatim
80*>
81*> \param[in] LDA
82*> \verbatim
83*> LDA is INTEGER
84*> The leading dimension of the array A. LDA >= max(N,1).
85*> \endverbatim
86*>
87*> \param[out] WORK
88*> \verbatim
89*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
90*> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
91*> referenced.
92*> \endverbatim
93*
94* Authors:
95* ========
96*
97*> \author Univ. of Tennessee
98*> \author Univ. of California Berkeley
99*> \author Univ. of Colorado Denver
100*> \author NAG Ltd.
101*
102*> \ingroup lanhs
103*
104* =====================================================================
105 DOUBLE PRECISION FUNCTION dlanhs( NORM, N, A, LDA, WORK )
106*
107* -- LAPACK auxiliary routine --
108* -- LAPACK is a software package provided by Univ. of Tennessee, --
109* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
110*
111* .. Scalar Arguments ..
112 CHARACTER norm
113 INTEGER lda, n
114* ..
115* .. Array Arguments ..
116 DOUBLE PRECISION a( lda, * ), work( * )
117* ..
118*
119* =====================================================================
120*
121* .. Parameters ..
122 DOUBLE PRECISION one, zero
123 parameter( one = 1.0d+0, zero = 0.0d+0 )
124* ..
125* .. Local Scalars ..
126 INTEGER i, j
127 DOUBLE PRECISION scale, sum, value
128* ..
129* .. External Subroutines ..
130 EXTERNAL dlassq
131* ..
132* .. External Functions ..
133 LOGICAL lsame, disnan
134 EXTERNAL lsame, disnan
135* ..
136* .. Intrinsic Functions ..
137 INTRINSIC abs, min, sqrt
138* ..
139* .. Executable Statements ..
140*
141 IF( n.EQ.0 ) THEN
142 VALUE = zero
143 ELSE IF( lsame( norm, 'M' ) ) THEN
144*
145* Find max(abs(A(i,j))).
146*
147 VALUE = zero
148 DO 20 j = 1, n
149 DO 10 i = 1, min( n, j+1 )
150 sum = abs( a( i, j ) )
151 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
152 10 CONTINUE
153 20 CONTINUE
154 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
155*
156* Find norm1(A).
157*
158 VALUE = zero
159 DO 40 j = 1, n
160 sum = zero
161 DO 30 i = 1, min( n, j+1 )
162 sum = sum + abs( a( i, j ) )
163 30 CONTINUE
164 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
165 40 CONTINUE
166 ELSE IF( lsame( norm, 'I' ) ) THEN
167*
168* Find normI(A).
169*
170 DO 50 i = 1, n
171 work( i ) = zero
172 50 CONTINUE
173 DO 70 j = 1, n
174 DO 60 i = 1, min( n, j+1 )
175 work( i ) = work( i ) + abs( a( i, j ) )
176 60 CONTINUE
177 70 CONTINUE
178 VALUE = zero
179 DO 80 i = 1, n
180 sum = work( i )
181 IF( VALUE .LT. sum .OR. disnan( sum ) ) VALUE = sum
182 80 CONTINUE
183 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
184 $ ( lsame( norm, 'E' ) ) ) THEN
185*
186* Find normF(A).
187*
188 scale = zero
189 sum = one
190 DO 90 j = 1, n
191 CALL dlassq( min( n, j+1 ), a( 1, j ), 1, scale, sum )
192 90 CONTINUE
193 VALUE = scale*sqrt( sum )
194 END IF
195*
196 dlanhs = VALUE
197 RETURN
198*
199* End of DLANHS
200*
201 END
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function dlanhs(norm, n, a, lda, work)
DLANHS returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlanhs.f:106
subroutine dlassq(n, x, incx, scale, sumsq)
DLASSQ updates a sum of squares represented in scaled form.
Definition dlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48