LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
sgeqr2p.f
Go to the documentation of this file.
1*> \brief \b SGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elements using an unblocked algorithm.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download SGEQR2P + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgeqr2p.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgeqr2p.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgeqr2p.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE SGEQR2P( M, N, A, LDA, TAU, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, LDA, M, N
23* ..
24* .. Array Arguments ..
25* REAL A( LDA, * ), TAU( * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> SGEQR2P computes a QR factorization of a real m-by-n matrix A:
35*>
36*> A = Q * ( R ),
37*> ( 0 )
38*>
39*> where:
40*>
41*> Q is a m-by-m orthogonal matrix;
42*> R is an upper-triangular n-by-n matrix with nonnegative diagonal
43*> entries;
44*> 0 is a (m-n)-by-n zero matrix, if m > n.
45*>
46*> \endverbatim
47*
48* Arguments:
49* ==========
50*
51*> \param[in] M
52*> \verbatim
53*> M is INTEGER
54*> The number of rows of the matrix A. M >= 0.
55*> \endverbatim
56*>
57*> \param[in] N
58*> \verbatim
59*> N is INTEGER
60*> The number of columns of the matrix A. N >= 0.
61*> \endverbatim
62*>
63*> \param[in,out] A
64*> \verbatim
65*> A is REAL array, dimension (LDA,N)
66*> On entry, the m by n matrix A.
67*> On exit, the elements on and above the diagonal of the array
68*> contain the min(m,n) by n upper trapezoidal matrix R (R is
69*> upper triangular if m >= n). The diagonal entries of R
70*> are nonnegative; the elements below the diagonal,
71*> with the array TAU, represent the orthogonal matrix Q as a
72*> product of elementary reflectors (see Further Details).
73*> \endverbatim
74*>
75*> \param[in] LDA
76*> \verbatim
77*> LDA is INTEGER
78*> The leading dimension of the array A. LDA >= max(1,M).
79*> \endverbatim
80*>
81*> \param[out] TAU
82*> \verbatim
83*> TAU is REAL array, dimension (min(M,N))
84*> The scalar factors of the elementary reflectors (see Further
85*> Details).
86*> \endverbatim
87*>
88*> \param[out] WORK
89*> \verbatim
90*> WORK is REAL array, dimension (N)
91*> \endverbatim
92*>
93*> \param[out] INFO
94*> \verbatim
95*> INFO is INTEGER
96*> = 0: successful exit
97*> < 0: if INFO = -i, the i-th argument had an illegal value
98*> \endverbatim
99*
100* Authors:
101* ========
102*
103*> \author Univ. of Tennessee
104*> \author Univ. of California Berkeley
105*> \author Univ. of Colorado Denver
106*> \author NAG Ltd.
107*
108*> \ingroup geqr2p
109*
110*> \par Further Details:
111* =====================
112*>
113*> \verbatim
114*>
115*> The matrix Q is represented as a product of elementary reflectors
116*>
117*> Q = H(1) H(2) . . . H(k), where k = min(m,n).
118*>
119*> Each H(i) has the form
120*>
121*> H(i) = I - tau * v * v**T
122*>
123*> where tau is a real scalar, and v is a real vector with
124*> v(1:i-1) = 0 and v(i) = 1; v(i+1:m) is stored on exit in A(i+1:m,i),
125*> and tau in TAU(i).
126*>
127*> See Lapack Working Note 203 for details
128*> \endverbatim
129*>
130* =====================================================================
131 SUBROUTINE sgeqr2p( M, N, A, LDA, TAU, WORK, INFO )
132*
133* -- LAPACK computational routine --
134* -- LAPACK is a software package provided by Univ. of Tennessee, --
135* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
136*
137* .. Scalar Arguments ..
138 INTEGER INFO, LDA, M, N
139* ..
140* .. Array Arguments ..
141 REAL A( LDA, * ), TAU( * ), WORK( * )
142* ..
143*
144* =====================================================================
145*
146* .. Local Scalars ..
147 INTEGER I, K
148* ..
149* .. External Subroutines ..
150 EXTERNAL slarf1f, slarfgp, xerbla
151* ..
152* .. Intrinsic Functions ..
153 INTRINSIC max, min
154* ..
155* .. Executable Statements ..
156*
157* Test the input arguments
158*
159 info = 0
160 IF( m.LT.0 ) THEN
161 info = -1
162 ELSE IF( n.LT.0 ) THEN
163 info = -2
164 ELSE IF( lda.LT.max( 1, m ) ) THEN
165 info = -4
166 END IF
167 IF( info.NE.0 ) THEN
168 CALL xerbla( 'SGEQR2P', -info )
169 RETURN
170 END IF
171*
172 k = min( m, n )
173*
174 DO 10 i = 1, k
175*
176* Generate elementary reflector H(i) to annihilate A(i+1:m,i)
177*
178 CALL slarfgp( m-i+1, a( i, i ), a( min( i+1, m ), i ), 1,
179 $ tau( i ) )
180 IF( i.LT.n ) THEN
181*
182* Apply H(i) to A(i:m,i+1:n) from the left
183*
184 CALL slarf1f( 'Left', m-i+1, n-i, a( i, i ), 1, tau( i ),
185 $ a( i, i+1 ), lda, work )
186 END IF
187 10 CONTINUE
188 RETURN
189*
190* End of SGEQR2P
191*
192 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgeqr2p(m, n, a, lda, tau, work, info)
SGEQR2P computes the QR factorization of a general rectangular matrix with non-negative diagonal elem...
Definition sgeqr2p.f:132
subroutine slarfgp(n, alpha, x, incx, tau)
SLARFGP generates an elementary reflector (Householder matrix) with non-negative beta.
Definition slarfgp.f:102
subroutine slarf1f(side, m, n, v, incv, tau, c, ldc, work)
SLARF1F applies an elementary reflector to a general rectangular
Definition slarf1f.f:123