LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ clqt05()

subroutine clqt05 ( integer  m,
integer  n,
integer  l,
integer  nb,
real, dimension(6)  result 
)

CLQT05

Purpose:
 CQRT05 tests CTPLQT and CTPMLQT.
Parameters
[in]M
          M is INTEGER
          Number of rows in lower part of the test matrix.
[in]N
          N is INTEGER
          Number of columns in test matrix.
[in]L
          L is INTEGER
          The number of rows of the upper trapezoidal part the
          lower test matrix.  0 <= L <= M.
[in]NB
          NB is INTEGER
          Block size of test matrix.  NB <= N.
[out]RESULT
          RESULT is DOUBLE PRECISION array, dimension (6)
          Results of each of the six tests below.

          RESULT(1) = | A - Q R |
          RESULT(2) = | I - Q^H Q |
          RESULT(3) = | Q C - Q C |
          RESULT(4) = | Q^H C - Q^H C |
          RESULT(5) = | C Q - C Q |
          RESULT(6) = | C Q^H - C Q^H |
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 79 of file clqt05.f.

80 IMPLICIT NONE
81*
82* -- LAPACK test routine --
83* -- LAPACK is a software package provided by Univ. of Tennessee, --
84* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
85*
86* .. Scalar Arguments ..
87 INTEGER LWORK, M, N, L, NB, LDT
88* .. Return values ..
89 REAL RESULT(6)
90*
91* =====================================================================
92*
93* ..
94* .. Local allocatable arrays
95 COMPLEX, ALLOCATABLE :: AF(:,:), Q(:,:),
96 $ R(:,:), WORK( : ), T(:,:),
97 $ CF(:,:), DF(:,:), A(:,:), C(:,:), D(:,:)
98 REAL, ALLOCATABLE :: RWORK(:)
99*
100* .. Parameters ..
101 REAL ZERO
102 COMPLEX ONE, CZERO
103 parameter( zero = 0.0, one = (1.0,0.0), czero=(0.0,0.0) )
104* ..
105* .. Local Scalars ..
106 INTEGER INFO, J, K, N2, NP1,i
107 REAL ANORM, EPS, RESID, CNORM, DNORM
108* ..
109* .. Local Arrays ..
110 INTEGER ISEED( 4 )
111* ..
112* .. External Functions ..
113 REAL SLAMCH
114 REAL CLANGE, CLANSY
115 LOGICAL LSAME
116 EXTERNAL slamch, clange, clansy, lsame
117* ..
118* .. Data statements ..
119 DATA iseed / 1988, 1989, 1990, 1991 /
120*
121 eps = slamch( 'Epsilon' )
122 k = m
123 n2 = m+n
124 IF( n.GT.0 ) THEN
125 np1 = m+1
126 ELSE
127 np1 = 1
128 END IF
129 lwork = n2*n2*nb
130*
131* Dynamically allocate all arrays
132*
133 ALLOCATE(a(m,n2),af(m,n2),q(n2,n2),r(n2,n2),rwork(n2),
134 $ work(lwork),t(nb,m),c(n2,m),cf(n2,m),
135 $ d(m,n2),df(m,n2) )
136*
137* Put random stuff into A
138*
139 ldt=nb
140 CALL claset( 'Full', m, n2, czero, czero, a, m )
141 CALL claset( 'Full', nb, m, czero, czero, t, nb )
142 DO j=1,m
143 CALL clarnv( 2, iseed, m-j+1, a( j, j ) )
144 END DO
145 IF( n.GT.0 ) THEN
146 DO j=1,n-l
147 CALL clarnv( 2, iseed, m, a( 1, min(n+m,m+1) + j - 1 ) )
148 END DO
149 END IF
150 IF( l.GT.0 ) THEN
151 DO j=1,l
152 CALL clarnv( 2, iseed, m-j+1, a( j, min(n+m,n+m-l+1)
153 $ + j - 1 ) )
154 END DO
155 END IF
156*
157* Copy the matrix A to the array AF.
158*
159 CALL clacpy( 'Full', m, n2, a, m, af, m )
160*
161* Factor the matrix A in the array AF.
162*
163 CALL ctplqt( m,n,l,nb,af,m,af(1,np1),m,t,ldt,work,info)
164*
165* Generate the (M+N)-by-(M+N) matrix Q by applying H to I
166*
167 CALL claset( 'Full', n2, n2, czero, one, q, n2 )
168 CALL cgemlqt( 'L', 'N', n2, n2, k, nb, af, m, t, ldt, q, n2,
169 $ work, info )
170*
171* Copy L
172*
173 CALL claset( 'Full', n2, n2, czero, czero, r, n2 )
174 CALL clacpy( 'Lower', m, n2, af, m, r, n2 )
175*
176* Compute |L - A*Q*C| / |A| and store in RESULT(1)
177*
178 CALL cgemm( 'N', 'C', m, n2, n2, -one, a, m, q, n2, one, r, n2)
179 anorm = clange( '1', m, n2, a, m, rwork )
180 resid = clange( '1', m, n2, r, n2, rwork )
181 IF( anorm.GT.zero ) THEN
182 result( 1 ) = resid / (eps*anorm*max(1,n2))
183 ELSE
184 result( 1 ) = zero
185 END IF
186*
187* Compute |I - Q*Q'| and store in RESULT(2)
188*
189 CALL claset( 'Full', n2, n2, czero, one, r, n2 )
190 CALL cherk( 'U', 'N', n2, n2, real(-one), q, n2, real(one),
191 $ r, n2 )
192 resid = clansy( '1', 'Upper', n2, r, n2, rwork )
193 result( 2 ) = resid / (eps*max(1,n2))
194*
195* Generate random m-by-n matrix C and a copy CF
196*
197 CALL claset( 'Full', n2, m, czero, one, c, n2 )
198 DO j=1,m
199 CALL clarnv( 2, iseed, n2, c( 1, j ) )
200 END DO
201 cnorm = clange( '1', n2, m, c, n2, rwork)
202 CALL clacpy( 'Full', n2, m, c, n2, cf, n2 )
203*
204* Apply Q to C as Q*C
205*
206 CALL ctpmlqt( 'L','N', n,m,k,l,nb,af(1, np1),m,t,ldt,cf,n2,
207 $ cf(np1,1),n2,work,info)
208*
209* Compute |Q*C - Q*C| / |C|
210*
211 CALL cgemm( 'N', 'N', n2, m, n2, -one, q, n2, c, n2, one, cf, n2 )
212 resid = clange( '1', n2, m, cf, n2, rwork )
213 IF( cnorm.GT.zero ) THEN
214 result( 3 ) = resid / (eps*max(1,n2)*cnorm)
215 ELSE
216 result( 3 ) = zero
217 END IF
218
219*
220* Copy C into CF again
221*
222 CALL clacpy( 'Full', n2, m, c, n2, cf, n2 )
223*
224* Apply Q to C as QT*C
225*
226 CALL ctpmlqt( 'L','C',n,m,k,l,nb,af(1,np1),m,t,ldt,cf,n2,
227 $ cf(np1,1),n2,work,info)
228*
229* Compute |QT*C - QT*C| / |C|
230*
231 CALL cgemm('C','N',n2,m,n2,-one,q,n2,c,n2,one,cf,n2)
232 resid = clange( '1', n2, m, cf, n2, rwork )
233
234 IF( cnorm.GT.zero ) THEN
235 result( 4 ) = resid / (eps*max(1,n2)*cnorm)
236 ELSE
237 result( 4 ) = zero
238 END IF
239*
240* Generate random m-by-n matrix D and a copy DF
241*
242 DO j=1,n2
243 CALL clarnv( 2, iseed, m, d( 1, j ) )
244 END DO
245 dnorm = clange( '1', m, n2, d, m, rwork)
246 CALL clacpy( 'Full', m, n2, d, m, df, m )
247*
248* Apply Q to D as D*Q
249*
250 CALL ctpmlqt('R','N',m,n,k,l,nb,af(1,np1),m,t,ldt,df,m,
251 $ df(1,np1),m,work,info)
252*
253* Compute |D*Q - D*Q| / |D|
254*
255 CALL cgemm('N','N',m,n2,n2,-one,d,m,q,n2,one,df,m)
256 resid = clange('1',m, n2,df,m,rwork )
257 IF( cnorm.GT.zero ) THEN
258 result( 5 ) = resid / (eps*max(1,n2)*dnorm)
259 ELSE
260 result( 5 ) = zero
261 END IF
262*
263* Copy D into DF again
264*
265 CALL clacpy('Full',m,n2,d,m,df,m )
266*
267* Apply Q to D as D*QT
268*
269 CALL ctpmlqt('R','C',m,n,k,l,nb,af(1,np1),m,t,ldt,df,m,
270 $ df(1,np1),m,work,info)
271
272*
273* Compute |D*QT - D*QT| / |D|
274*
275 CALL cgemm( 'N', 'C', m, n2, n2, -one, d, m, q, n2, one, df, m )
276 resid = clange( '1', m, n2, df, m, rwork )
277 IF( cnorm.GT.zero ) THEN
278 result( 6 ) = resid / (eps*max(1,n2)*dnorm)
279 ELSE
280 result( 6 ) = zero
281 END IF
282*
283* Deallocate all arrays
284*
285 DEALLOCATE ( a, af, q, r, rwork, work, t, c, d, cf, df)
286 RETURN
subroutine cgemlqt(side, trans, m, n, k, mb, v, ldv, t, ldt, c, ldc, work, info)
CGEMLQT
Definition cgemlqt.f:153
subroutine cgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
CGEMM
Definition cgemm.f:188
subroutine cherk(uplo, trans, n, k, alpha, a, lda, beta, c, ldc)
CHERK
Definition cherk.f:173
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function clange(norm, m, n, a, lda, work)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition clange.f:115
real function clansy(norm, uplo, n, a, lda, work)
CLANSY returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition clansy.f:123
subroutine clarnv(idist, iseed, n, x)
CLARNV returns a vector of random numbers from a uniform or normal distribution.
Definition clarnv.f:99
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine ctplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
CTPLQT
Definition ctplqt.f:174
subroutine ctpmlqt(side, trans, m, n, k, l, mb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
CTPMLQT
Definition ctpmlqt.f:199
Here is the call graph for this function:
Here is the caller graph for this function: