LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ctplqt()

subroutine ctplqt ( integer m,
integer n,
integer l,
integer mb,
complex, dimension( lda, * ) a,
integer lda,
complex, dimension( ldb, * ) b,
integer ldb,
complex, dimension( ldt, * ) t,
integer ldt,
complex, dimension( * ) work,
integer info )

CTPLQT

Purpose:
!>
!> CTPLQT computes a blocked LQ factorization of a complex
!>  matrix C, which is composed of a
!> triangular block A and pentagonal block B, using the compact
!> WY representation for Q.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix B, and the order of the
!>          triangular matrix A.
!>          M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix B.
!>          N >= 0.
!> 
[in]L
!>          L is INTEGER
!>          The number of rows of the lower trapezoidal part of B.
!>          MIN(M,N) >= L >= 0.  See Further Details.
!> 
[in]MB
!>          MB is INTEGER
!>          The block size to be used in the blocked QR.  M >= MB >= 1.
!> 
[in,out]A
!>          A is COMPLEX array, dimension (LDA,M)
!>          On entry, the lower triangular M-by-M matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the lower triangular matrix L.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[in,out]B
!>          B is COMPLEX array, dimension (LDB,N)
!>          On entry, the pentagonal M-by-N matrix B.  The first N-L columns
!>          are rectangular, and the last L columns are lower trapezoidal.
!>          On exit, B contains the pentagonal matrix V.  See Further Details.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B.  LDB >= max(1,M).
!> 
[out]T
!>          T is COMPLEX array, dimension (LDT,N)
!>          The lower triangular block reflectors stored in compact form
!>          as a sequence of upper triangular blocks.  See Further Details.
!> 
[in]LDT
!>          LDT is INTEGER
!>          The leading dimension of the array T.  LDT >= MB.
!> 
[out]WORK
!>          WORK is COMPLEX array, dimension (MB*M)
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
!>
!>  The input matrix C is a M-by-(M+N) matrix
!>
!>               C = [ A ] [ B ]
!>
!>
!>  where A is an lower triangular M-by-M matrix, and B is M-by-N pentagonal
!>  matrix consisting of a M-by-(N-L) rectangular matrix B1 on left of a M-by-L
!>  upper trapezoidal matrix B2:
!>          [ B ] = [ B1 ] [ B2 ]
!>                   [ B1 ]  <- M-by-(N-L) rectangular
!>                   [ B2 ]  <-     M-by-L lower trapezoidal.
!>
!>  The lower trapezoidal matrix B2 consists of the first L columns of a
!>  M-by-M lower triangular matrix, where 0 <= L <= MIN(M,N).  If L=0,
!>  B is rectangular M-by-N; if M=L=N, B is lower triangular.
!>
!>  The matrix W stores the elementary reflectors H(i) in the i-th row
!>  above the diagonal (of A) in the M-by-(M+N) input matrix C
!>            [ C ] = [ A ] [ B ]
!>                   [ A ]  <- lower triangular M-by-M
!>                   [ B ]  <- M-by-N pentagonal
!>
!>  so that W can be represented as
!>            [ W ] = [ I ] [ V ]
!>                   [ I ]  <- identity, M-by-M
!>                   [ V ]  <- M-by-N, same form as B.
!>
!>  Thus, all of information needed for W is contained on exit in B, which
!>  we call V above.  Note that V has the same form as B; that is,
!>            [ V ] = [ V1 ] [ V2 ]
!>                   [ V1 ] <- M-by-(N-L) rectangular
!>                   [ V2 ] <-     M-by-L lower trapezoidal.
!>
!>  The rows of V represent the vectors which define the H(i)'s.
!>
!>  The number of blocks is B = ceiling(M/MB), where each
!>  block is of order MB except for the last block, which is of order
!>  IB = M - (M-1)*MB.  For each of the B blocks, a upper triangular block
!>  reflector factor is computed: T1, T2, ..., TB.  The MB-by-MB (and IB-by-IB
!>  for the last block) T's are stored in the MB-by-N matrix T as
!>
!>               T = [T1 T2 ... TB].
!> 

Definition at line 172 of file ctplqt.f.

174*
175* -- LAPACK computational routine --
176* -- LAPACK is a software package provided by Univ. of Tennessee, --
177* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178*
179* .. Scalar Arguments ..
180 INTEGER INFO, LDA, LDB, LDT, N, M, L, MB
181* ..
182* .. Array Arguments ..
183 COMPLEX A( LDA, * ), B( LDB, * ), T( LDT, * ), WORK( * )
184* ..
185*
186* =====================================================================
187*
188* ..
189* .. Local Scalars ..
190 INTEGER I, IB, LB, NB, IINFO
191* ..
192* .. External Subroutines ..
193 EXTERNAL ctplqt2, ctprfb, xerbla
194* ..
195* .. Executable Statements ..
196*
197* Test the input arguments
198*
199 info = 0
200 IF( m.LT.0 ) THEN
201 info = -1
202 ELSE IF( n.LT.0 ) THEN
203 info = -2
204 ELSE IF( l.LT.0 .OR. (l.GT.min(m,n) .AND. min(m,n).GE.0)) THEN
205 info = -3
206 ELSE IF( mb.LT.1 .OR. (mb.GT.m .AND. m.GT.0)) THEN
207 info = -4
208 ELSE IF( lda.LT.max( 1, m ) ) THEN
209 info = -6
210 ELSE IF( ldb.LT.max( 1, m ) ) THEN
211 info = -8
212 ELSE IF( ldt.LT.mb ) THEN
213 info = -10
214 END IF
215 IF( info.NE.0 ) THEN
216 CALL xerbla( 'CTPLQT', -info )
217 RETURN
218 END IF
219*
220* Quick return if possible
221*
222 IF( m.EQ.0 .OR. n.EQ.0 ) RETURN
223*
224 DO i = 1, m, mb
225*
226* Compute the QR factorization of the current block
227*
228 ib = min( m-i+1, mb )
229 nb = min( n-l+i+ib-1, n )
230 IF( i.GE.l ) THEN
231 lb = 0
232 ELSE
233 lb = nb-n+l-i+1
234 END IF
235*
236 CALL ctplqt2( ib, nb, lb, a(i,i), lda, b( i, 1 ), ldb,
237 $ t(1, i ), ldt, iinfo )
238*
239* Update by applying H**T to B(I+IB:M,:) from the right
240*
241 IF( i+ib.LE.m ) THEN
242 CALL ctprfb( 'R', 'N', 'F', 'R', m-i-ib+1, nb, ib, lb,
243 $ b( i, 1 ), ldb, t( 1, i ), ldt,
244 $ a( i+ib, i ), lda, b( i+ib, 1 ), ldb,
245 $ work, m-i-ib+1)
246 END IF
247 END DO
248 RETURN
249*
250* End of CTPLQT
251*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ctplqt2(m, n, l, a, lda, b, ldb, t, ldt, info)
CTPLQT2
Definition ctplqt2.f:162
subroutine ctprfb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
CTPRFB applies a complex "triangular-pentagonal" block reflector to a complex matrix,...
Definition ctprfb.f:249
Here is the call graph for this function:
Here is the caller graph for this function: