LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dchkqr()

subroutine dchkqr ( logical, dimension( * ) dotype,
integer nm,
integer, dimension( * ) mval,
integer nn,
integer, dimension( * ) nval,
integer nnb,
integer, dimension( * ) nbval,
integer, dimension( * ) nxval,
integer nrhs,
double precision thresh,
logical tsterr,
integer nmax,
double precision, dimension( * ) a,
double precision, dimension( * ) af,
double precision, dimension( * ) aq,
double precision, dimension( * ) ar,
double precision, dimension( * ) ac,
double precision, dimension( * ) b,
double precision, dimension( * ) x,
double precision, dimension( * ) xact,
double precision, dimension( * ) tau,
double precision, dimension( * ) work,
double precision, dimension( * ) rwork,
integer, dimension( * ) iwork,
integer nout )

DCHKQR

Purpose:
!>
!> DCHKQR tests DGEQRF, DORGQR and DORMQR.
!> 
Parameters
[in]DOTYPE
!>          DOTYPE is LOGICAL array, dimension (NTYPES)
!>          The matrix types to be used for testing.  Matrices of type j
!>          (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
!>          .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
!> 
[in]NM
!>          NM is INTEGER
!>          The number of values of M contained in the vector MVAL.
!> 
[in]MVAL
!>          MVAL is INTEGER array, dimension (NM)
!>          The values of the matrix row dimension M.
!> 
[in]NN
!>          NN is INTEGER
!>          The number of values of N contained in the vector NVAL.
!> 
[in]NVAL
!>          NVAL is INTEGER array, dimension (NN)
!>          The values of the matrix column dimension N.
!> 
[in]NNB
!>          NNB is INTEGER
!>          The number of values of NB and NX contained in the
!>          vectors NBVAL and NXVAL.  The blocking parameters are used
!>          in pairs (NB,NX).
!> 
[in]NBVAL
!>          NBVAL is INTEGER array, dimension (NNB)
!>          The values of the blocksize NB.
!> 
[in]NXVAL
!>          NXVAL is INTEGER array, dimension (NNB)
!>          The values of the crossover point NX.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>          The number of right hand side vectors to be generated for
!>          each linear system.
!> 
[in]THRESH
!>          THRESH is DOUBLE PRECISION
!>          The threshold value for the test ratios.  A result is
!>          included in the output file if RESULT >= THRESH.  To have
!>          every test ratio printed, use THRESH = 0.
!> 
[in]TSTERR
!>          TSTERR is LOGICAL
!>          Flag that indicates whether error exits are to be tested.
!> 
[in]NMAX
!>          NMAX is INTEGER
!>          The maximum value permitted for M or N, used in dimensioning
!>          the work arrays.
!> 
[out]A
!>          A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]AF
!>          AF is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]AQ
!>          AQ is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]AR
!>          AR is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]AC
!>          AC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]B
!>          B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
!> 
[out]X
!>          X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
!> 
[out]XACT
!>          XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
!> 
[out]TAU
!>          TAU is DOUBLE PRECISION array, dimension (NMAX)
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (NMAX*NMAX)
!> 
[out]RWORK
!>          RWORK is DOUBLE PRECISION array, dimension (NMAX)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (NMAX)
!> 
[in]NOUT
!>          NOUT is INTEGER
!>          The unit number for output.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 198 of file dchkqr.f.

201*
202* -- LAPACK test routine --
203* -- LAPACK is a software package provided by Univ. of Tennessee, --
204* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
205*
206* .. Scalar Arguments ..
207 LOGICAL TSTERR
208 INTEGER NM, NMAX, NN, NNB, NOUT, NRHS
209 DOUBLE PRECISION THRESH
210* ..
211* .. Array Arguments ..
212 LOGICAL DOTYPE( * )
213 INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NVAL( * ),
214 $ NXVAL( * )
215 DOUBLE PRECISION A( * ), AC( * ), AF( * ), AQ( * ), AR( * ),
216 $ B( * ), RWORK( * ), TAU( * ), WORK( * ),
217 $ X( * ), XACT( * )
218* ..
219*
220* =====================================================================
221*
222* .. Parameters ..
223 INTEGER NTESTS
224 parameter( ntests = 9 )
225 INTEGER NTYPES
226 parameter( ntypes = 8 )
227 DOUBLE PRECISION ZERO
228 parameter( zero = 0.0d0 )
229* ..
230* .. Local Scalars ..
231 CHARACTER DIST, TYPE
232 CHARACTER*3 PATH
233 INTEGER I, IK, IM, IMAT, IN, INB, INFO, K, KL, KU, LDA,
234 $ LWORK, M, MINMN, MODE, N, NB, NERRS, NFAIL, NK,
235 $ NRUN, NT, NX
236 DOUBLE PRECISION ANORM, CNDNUM
237* ..
238* .. Local Arrays ..
239 INTEGER ISEED( 4 ), ISEEDY( 4 ), KVAL( 4 )
240 DOUBLE PRECISION RESULT( NTESTS )
241* ..
242* .. External Functions ..
243 LOGICAL DGENND
244 EXTERNAL dgennd
245* ..
246* .. External Subroutines ..
247 EXTERNAL alaerh, alahd, alasum, derrqr, dgels, dget02,
250* ..
251* .. Intrinsic Functions ..
252 INTRINSIC max, min
253* ..
254* .. Scalars in Common ..
255 LOGICAL LERR, OK
256 CHARACTER*32 SRNAMT
257 INTEGER INFOT, NUNIT
258* ..
259* .. Common blocks ..
260 COMMON / infoc / infot, nunit, ok, lerr
261 COMMON / srnamc / srnamt
262* ..
263* .. Data statements ..
264 DATA iseedy / 1988, 1989, 1990, 1991 /
265* ..
266* .. Executable Statements ..
267*
268* Initialize constants and the random number seed.
269*
270 path( 1: 1 ) = 'Double precision'
271 path( 2: 3 ) = 'QR'
272 nrun = 0
273 nfail = 0
274 nerrs = 0
275 DO 10 i = 1, 4
276 iseed( i ) = iseedy( i )
277 10 CONTINUE
278*
279* Test the error exits
280*
281 IF( tsterr )
282 $ CALL derrqr( path, nout )
283 infot = 0
284 CALL xlaenv( 2, 2 )
285*
286 lda = nmax
287 lwork = nmax*max( nmax, nrhs )
288*
289* Do for each value of M in MVAL.
290*
291 DO 70 im = 1, nm
292 m = mval( im )
293*
294* Do for each value of N in NVAL.
295*
296 DO 60 in = 1, nn
297 n = nval( in )
298 minmn = min( m, n )
299 DO 50 imat = 1, ntypes
300*
301* Do the tests only if DOTYPE( IMAT ) is true.
302*
303 IF( .NOT.dotype( imat ) )
304 $ GO TO 50
305*
306* Set up parameters with DLATB4 and generate a test matrix
307* with DLATMS.
308*
309 CALL dlatb4( path, imat, m, n, TYPE, KL, KU, ANORM, MODE,
310 $ CNDNUM, DIST )
311*
312 srnamt = 'DLATMS'
313 CALL dlatms( m, n, dist, iseed, TYPE, RWORK, MODE,
314 $ CNDNUM, ANORM, KL, KU, 'No packing', A, LDA,
315 $ WORK, INFO )
316*
317* Check error code from DLATMS.
318*
319 IF( info.NE.0 ) THEN
320 CALL alaerh( path, 'DLATMS', info, 0, ' ', m, n, -1,
321 $ -1, -1, imat, nfail, nerrs, nout )
322 GO TO 50
323 END IF
324*
325* Set some values for K: the first value must be MINMN,
326* corresponding to the call of DQRT01; other values are
327* used in the calls of DQRT02, and must not exceed MINMN.
328*
329 kval( 1 ) = minmn
330 kval( 2 ) = 0
331 kval( 3 ) = 1
332 kval( 4 ) = minmn / 2
333 IF( minmn.EQ.0 ) THEN
334 nk = 1
335 ELSE IF( minmn.EQ.1 ) THEN
336 nk = 2
337 ELSE IF( minmn.LE.3 ) THEN
338 nk = 3
339 ELSE
340 nk = 4
341 END IF
342*
343* Do for each value of K in KVAL
344*
345 DO 40 ik = 1, nk
346 k = kval( ik )
347*
348* Do for each pair of values (NB,NX) in NBVAL and NXVAL.
349*
350 DO 30 inb = 1, nnb
351 nb = nbval( inb )
352 CALL xlaenv( 1, nb )
353 nx = nxval( inb )
354 CALL xlaenv( 3, nx )
355 DO i = 1, ntests
356 result( i ) = zero
357 END DO
358 nt = 2
359 IF( ik.EQ.1 ) THEN
360*
361* Test DGEQRF
362*
363 CALL dqrt01( m, n, a, af, aq, ar, lda, tau,
364 $ work, lwork, rwork, result( 1 ) )
365
366*
367* Test DGEQRFP
368*
369 CALL dqrt01p( m, n, a, af, aq, ar, lda, tau,
370 $ work, lwork, rwork, result( 8 ) )
371
372 IF( .NOT. dgennd( m, n, af, lda ) )
373 $ result( 9 ) = 2*thresh
374 nt = nt + 1
375 ELSE IF( m.GE.n ) THEN
376*
377* Test DORGQR, using factorization
378* returned by DQRT01
379*
380 CALL dqrt02( m, n, k, a, af, aq, ar, lda, tau,
381 $ work, lwork, rwork, result( 1 ) )
382 END IF
383 IF( m.GE.k ) THEN
384*
385* Test DORMQR, using factorization returned
386* by DQRT01
387*
388 CALL dqrt03( m, n, k, af, ac, ar, aq, lda, tau,
389 $ work, lwork, rwork, result( 3 ) )
390 nt = nt + 4
391*
392* If M>=N and K=N, call DGELS to solve a system
393* with NRHS right hand sides and compute the
394* residual.
395*
396 IF( k.EQ.n .AND. inb.EQ.1 ) THEN
397*
398* Generate a solution and set the right
399* hand side.
400*
401 srnamt = 'DLARHS'
402 CALL dlarhs( path, 'New', 'Full',
403 $ 'No transpose', m, n, 0, 0,
404 $ nrhs, a, lda, xact, lda, b, lda,
405 $ iseed, info )
406*
407 CALL dlacpy( 'Full', m, nrhs, b, lda, x,
408 $ lda )
409*
410* Reset AF. DGELS overwrites the matrix with
411* its factorization.
412*
413 CALL dlacpy( 'Full', m, n, a, lda, af, lda )
414*
415 srnamt = 'DGELS'
416 CALL dgels( 'No transpose', m, n, nrhs, af,
417 $ lda, x, lda, work, lwork, info )
418*
419* Check error code from DGELS.
420*
421 IF( info.NE.0 )
422 $ CALL alaerh( path, 'DGELS', info, 0, 'N',
423 $ m, n, nrhs, -1, nb, imat,
424 $ nfail, nerrs, nout )
425*
426 CALL dget02( 'No transpose', m, n, nrhs, a,
427 $ lda, x, lda, b, lda, rwork,
428 $ result( 7 ) )
429 nt = nt + 1
430 END IF
431 END IF
432*
433* Print information about the tests that did not
434* pass the threshold.
435*
436 DO 20 i = 1, ntests
437 IF( result( i ).GE.thresh ) THEN
438 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
439 $ CALL alahd( nout, path )
440 WRITE( nout, fmt = 9999 )m, n, k, nb, nx,
441 $ imat, i, result( i )
442 nfail = nfail + 1
443 END IF
444 20 CONTINUE
445 nrun = nrun + ntests
446 30 CONTINUE
447 40 CONTINUE
448 50 CONTINUE
449 60 CONTINUE
450 70 CONTINUE
451*
452* Print a summary of the results.
453*
454 CALL alasum( path, nout, nfail, nrun, nerrs )
455*
456 9999 FORMAT( ' M=', i5, ', N=', i5, ', K=', i5, ', NB=', i4, ', NX=',
457 $ i5, ', type ', i2, ', test(', i2, ')=', g12.5 )
458 RETURN
459*
460* End of DCHKQR
461*
subroutine alasum(type, nout, nfail, nrun, nerrs)
ALASUM
Definition alasum.f:73
subroutine dget02(trans, m, n, nrhs, a, lda, x, ldx, b, ldb, rwork, resid)
DGET02
Definition dget02.f:135
subroutine dlarhs(path, xtype, uplo, trans, m, n, kl, ku, nrhs, a, lda, x, ldx, b, ldb, iseed, info)
DLARHS
Definition dlarhs.f:205
subroutine xlaenv(ispec, nvalue)
XLAENV
Definition xlaenv.f:81
subroutine alaerh(path, subnam, info, infoe, opts, m, n, kl, ku, n5, imat, nfail, nerrs, nout)
ALAERH
Definition alaerh.f:147
subroutine alahd(iounit, path)
ALAHD
Definition alahd.f:107
subroutine derrqr(path, nunit)
DERRQR
Definition derrqr.f:55
logical function dgennd(m, n, a, lda)
DGENND
Definition dgennd.f:68
subroutine dlatb4(path, imat, m, n, type, kl, ku, anorm, mode, cndnum, dist)
DLATB4
Definition dlatb4.f:120
subroutine dlatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
DLATMS
Definition dlatms.f:321
subroutine dqrt01(m, n, a, af, q, r, lda, tau, work, lwork, rwork, result)
DQRT01
Definition dqrt01.f:126
subroutine dqrt01p(m, n, a, af, q, r, lda, tau, work, lwork, rwork, result)
DQRT01P
Definition dqrt01p.f:126
subroutine dqrt02(m, n, k, a, af, q, r, lda, tau, work, lwork, rwork, result)
DQRT02
Definition dqrt02.f:135
subroutine dqrt03(m, n, k, af, c, cc, q, lda, tau, work, lwork, rwork, result)
DQRT03
Definition dqrt03.f:136
subroutine dgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork, info)
DGELS solves overdetermined or underdetermined systems for GE matrices
Definition dgels.f:192
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:101
Here is the call graph for this function:
Here is the caller graph for this function: