LAPACK
3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dgennd.f
Go to the documentation of this file.
1
*> \brief \b DGENND
2
*
3
* =========== DOCUMENTATION ===========
4
*
5
* Online html documentation available at
6
* http://www.netlib.org/lapack/explore-html/
7
*
8
* Definition:
9
* ===========
10
*
11
* LOGICAL FUNCTION DGENND (M, N, A, LDA)
12
*
13
* .. Scalar Arguments ..
14
* INTEGER M, N, LDA
15
* ..
16
* .. Array Arguments ..
17
* DOUBLE PRECISION A( LDA, * )
18
* ..
19
*
20
*
21
*> \par Purpose:
22
* =============
23
*>
24
*> \verbatim
25
*>
26
*> DGENND tests that its argument has a non-negative diagonal.
27
*> \endverbatim
28
*
29
* Arguments:
30
* ==========
31
*
32
*> \param[in] M
33
*> \verbatim
34
*> M is INTEGER
35
*> The number of rows in A.
36
*> \endverbatim
37
*>
38
*> \param[in] N
39
*> \verbatim
40
*> N is INTEGER
41
*> The number of columns in A.
42
*> \endverbatim
43
*>
44
*> \param[in] A
45
*> \verbatim
46
*> A is DOUBLE PRECISION array, dimension (LDA, N)
47
*> The matrix.
48
*> \endverbatim
49
*>
50
*> \param[in] LDA
51
*> \verbatim
52
*> LDA is INTEGER
53
*> Leading dimension of A.
54
*> \endverbatim
55
*
56
* Authors:
57
* ========
58
*
59
*> \author Univ. of Tennessee
60
*> \author Univ. of California Berkeley
61
*> \author Univ. of Colorado Denver
62
*> \author NAG Ltd.
63
*
64
*> \ingroup double_lin
65
*
66
* =====================================================================
67
LOGICAL
FUNCTION
dgennd
(M, N, A, LDA)
68
*
69
* -- LAPACK test routine --
70
* -- LAPACK is a software package provided by Univ. of Tennessee, --
71
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
72
*
73
* .. Scalar Arguments ..
74
INTEGER
m, n, lda
75
* ..
76
* .. Array Arguments ..
77
DOUBLE PRECISION
a( lda, * )
78
* ..
79
*
80
* =====================================================================
81
*
82
* .. Parameters ..
83
DOUBLE PRECISION
zero
84
parameter( zero = 0.0d0 )
85
* ..
86
* .. Local Scalars ..
87
INTEGER
i, k
88
* ..
89
* .. Intrinsics ..
90
INTRINSIC
min
91
* ..
92
* .. Executable Statements ..
93
k = min( m, n )
94
DO
i = 1, k
95
IF
( a( i, i ).LT.zero )
THEN
96
dgennd
= .false.
97
RETURN
98
END IF
99
END DO
100
dgennd
= .true.
101
RETURN
102
END
dgennd
logical function dgennd(m, n, a, lda)
DGENND
Definition
dgennd.f:68
TESTING
LIN
dgennd.f
Generated on Tue Nov 28 2023 11:55:09 for LAPACK by
1.9.7