LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dgennd.f
Go to the documentation of this file.
1*> \brief \b DGENND
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8* Definition:
9* ===========
10*
11* LOGICAL FUNCTION DGENND (M, N, A, LDA)
12*
13* .. Scalar Arguments ..
14* INTEGER M, N, LDA
15* ..
16* .. Array Arguments ..
17* DOUBLE PRECISION A( LDA, * )
18* ..
19*
20*
21*> \par Purpose:
22* =============
23*>
24*> \verbatim
25*>
26*> DGENND tests that its argument has a non-negative diagonal.
27*> \endverbatim
28*
29* Arguments:
30* ==========
31*
32*> \param[in] M
33*> \verbatim
34*> M is INTEGER
35*> The number of rows in A.
36*> \endverbatim
37*>
38*> \param[in] N
39*> \verbatim
40*> N is INTEGER
41*> The number of columns in A.
42*> \endverbatim
43*>
44*> \param[in] A
45*> \verbatim
46*> A is DOUBLE PRECISION array, dimension (LDA, N)
47*> The matrix.
48*> \endverbatim
49*>
50*> \param[in] LDA
51*> \verbatim
52*> LDA is INTEGER
53*> Leading dimension of A.
54*> \endverbatim
55*
56* Authors:
57* ========
58*
59*> \author Univ. of Tennessee
60*> \author Univ. of California Berkeley
61*> \author Univ. of Colorado Denver
62*> \author NAG Ltd.
63*
64*> \ingroup double_lin
65*
66* =====================================================================
67 LOGICAL FUNCTION dgennd (M, N, A, LDA)
68*
69* -- LAPACK test routine --
70* -- LAPACK is a software package provided by Univ. of Tennessee, --
71* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
72*
73* .. Scalar Arguments ..
74 INTEGER m, n, lda
75* ..
76* .. Array Arguments ..
77 DOUBLE PRECISION a( lda, * )
78* ..
79*
80* =====================================================================
81*
82* .. Parameters ..
83 DOUBLE PRECISION zero
84 parameter( zero = 0.0d0 )
85* ..
86* .. Local Scalars ..
87 INTEGER i, k
88* ..
89* .. Intrinsics ..
90 INTRINSIC min
91* ..
92* .. Executable Statements ..
93 k = min( m, n )
94 DO i = 1, k
95 IF( a( i, i ).LT.zero ) THEN
96 dgennd = .false.
97 RETURN
98 END IF
99 END DO
100 dgennd = .true.
101 RETURN
102 END
logical function dgennd(m, n, a, lda)
DGENND
Definition dgennd.f:68