LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ cchkhb()

subroutine cchkhb ( integer  nsizes,
integer, dimension( * )  nn,
integer  nwdths,
integer, dimension( * )  kk,
integer  ntypes,
logical, dimension( * )  dotype,
integer, dimension( 4 )  iseed,
real  thresh,
integer  nounit,
complex, dimension( lda, * )  a,
integer  lda,
real, dimension( * )  sd,
real, dimension( * )  se,
complex, dimension( ldu, * )  u,
integer  ldu,
complex, dimension( * )  work,
integer  lwork,
real, dimension( * )  rwork,
real, dimension( * )  result,
integer  info 
)

CCHKHB

Purpose:
 CCHKHB tests the reduction of a Hermitian band matrix to tridiagonal
 from, used with the Hermitian eigenvalue problem.

 CHBTRD factors a Hermitian band matrix A as  U S U* , where * means
 conjugate transpose, S is symmetric tridiagonal, and U is unitary.
 CHBTRD can use either just the lower or just the upper triangle
 of A; CCHKHB checks both cases.

 When CCHKHB is called, a number of matrix "sizes" ("n's"), a number
 of bandwidths ("k's"), and a number of matrix "types" are
 specified.  For each size ("n"), each bandwidth ("k") less than or
 equal to "n", and each type of matrix, one matrix will be generated
 and used to test the hermitian banded reduction routine.  For each
 matrix, a number of tests will be performed:

 (1)     | A - V S V* | / ( |A| n ulp )  computed by CHBTRD with
                                         UPLO='U'

 (2)     | I - UU* | / ( n ulp )

 (3)     | A - V S V* | / ( |A| n ulp )  computed by CHBTRD with
                                         UPLO='L'

 (4)     | I - UU* | / ( n ulp )

 The "sizes" are specified by an array NN(1:NSIZES); the value of
 each element NN(j) specifies one size.
 The "types" are specified by a logical array DOTYPE( 1:NTYPES );
 if DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
 Currently, the list of possible types is:

 (1)  The zero matrix.
 (2)  The identity matrix.

 (3)  A diagonal matrix with evenly spaced entries
      1, ..., ULP  and random signs.
      (ULP = (first number larger than 1) - 1 )
 (4)  A diagonal matrix with geometrically spaced entries
      1, ..., ULP  and random signs.
 (5)  A diagonal matrix with "clustered" entries 1, ULP, ..., ULP
      and random signs.

 (6)  Same as (4), but multiplied by SQRT( overflow threshold )
 (7)  Same as (4), but multiplied by SQRT( underflow threshold )

 (8)  A matrix of the form  U* D U, where U is unitary and
      D has evenly spaced entries 1, ..., ULP with random signs
      on the diagonal.

 (9)  A matrix of the form  U* D U, where U is unitary and
      D has geometrically spaced entries 1, ..., ULP with random
      signs on the diagonal.

 (10) A matrix of the form  U* D U, where U is unitary and
      D has "clustered" entries 1, ULP,..., ULP with random
      signs on the diagonal.

 (11) Same as (8), but multiplied by SQRT( overflow threshold )
 (12) Same as (8), but multiplied by SQRT( underflow threshold )

 (13) Hermitian matrix with random entries chosen from (-1,1).
 (14) Same as (13), but multiplied by SQRT( overflow threshold )
 (15) Same as (13), but multiplied by SQRT( underflow threshold )
Parameters
[in]NSIZES
          NSIZES is INTEGER
          The number of sizes of matrices to use.  If it is zero,
          CCHKHB does nothing.  It must be at least zero.
[in]NN
          NN is INTEGER array, dimension (NSIZES)
          An array containing the sizes to be used for the matrices.
          Zero values will be skipped.  The values must be at least
          zero.
[in]NWDTHS
          NWDTHS is INTEGER
          The number of bandwidths to use.  If it is zero,
          CCHKHB does nothing.  It must be at least zero.
[in]KK
          KK is INTEGER array, dimension (NWDTHS)
          An array containing the bandwidths to be used for the band
          matrices.  The values must be at least zero.
[in]NTYPES
          NTYPES is INTEGER
          The number of elements in DOTYPE.   If it is zero, CCHKHB
          does nothing.  It must be at least zero.  If it is MAXTYP+1
          and NSIZES is 1, then an additional type, MAXTYP+1 is
          defined, which is to use whatever matrix is in A.  This
          is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
          DOTYPE(MAXTYP+1) is .TRUE. .
[in]DOTYPE
          DOTYPE is LOGICAL array, dimension (NTYPES)
          If DOTYPE(j) is .TRUE., then for each size in NN a
          matrix of that size and of type j will be generated.
          If NTYPES is smaller than the maximum number of types
          defined (PARAMETER MAXTYP), then types NTYPES+1 through
          MAXTYP will not be generated.  If NTYPES is larger
          than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
          will be ignored.
[in,out]ISEED
          ISEED is INTEGER array, dimension (4)
          On entry ISEED specifies the seed of the random number
          generator. The array elements should be between 0 and 4095;
          if not they will be reduced mod 4096.  Also, ISEED(4) must
          be odd.  The random number generator uses a linear
          congruential sequence limited to small integers, and so
          should produce machine independent random numbers. The
          values of ISEED are changed on exit, and can be used in the
          next call to CCHKHB to continue the same random number
          sequence.
[in]THRESH
          THRESH is REAL
          A test will count as "failed" if the "error", computed as
          described above, exceeds THRESH.  Note that the error
          is scaled to be O(1), so THRESH should be a reasonably
          small multiple of 1, e.g., 10 or 100.  In particular,
          it should not depend on the precision (single vs. double)
          or the size of the matrix.  It must be at least zero.
[in]NOUNIT
          NOUNIT is INTEGER
          The FORTRAN unit number for printing out error messages
          (e.g., if a routine returns IINFO not equal to 0.)
[in,out]A
          A is COMPLEX array, dimension
                            (LDA, max(NN))
          Used to hold the matrix whose eigenvalues are to be
          computed.
[in]LDA
          LDA is INTEGER
          The leading dimension of A.  It must be at least 2 (not 1!)
          and at least max( KK )+1.
[out]SD
          SD is REAL array, dimension (max(NN))
          Used to hold the diagonal of the tridiagonal matrix computed
          by CHBTRD.
[out]SE
          SE is REAL array, dimension (max(NN))
          Used to hold the off-diagonal of the tridiagonal matrix
          computed by CHBTRD.
[out]U
          U is COMPLEX array, dimension (LDU, max(NN))
          Used to hold the unitary matrix computed by CHBTRD.
[in]LDU
          LDU is INTEGER
          The leading dimension of U.  It must be at least 1
          and at least max( NN ).
[out]WORK
          WORK is COMPLEX array, dimension (LWORK)
[in]LWORK
          LWORK is INTEGER
          The number of entries in WORK.  This must be at least
          max( LDA+1, max(NN)+1 )*max(NN).
[out]RWORK
          RWORK is REAL array
[out]RESULT
          RESULT is REAL array, dimension (4)
          The values computed by the tests described above.
          The values are currently limited to 1/ulp, to avoid
          overflow.
[out]INFO
          INFO is INTEGER
          If 0, then everything ran OK.

-----------------------------------------------------------------------

       Some Local Variables and Parameters:
       ---- ----- --------- --- ----------
       ZERO, ONE       Real 0 and 1.
       MAXTYP          The number of types defined.
       NTEST           The number of tests performed, or which can
                       be performed so far, for the current matrix.
       NTESTT          The total number of tests performed so far.
       NMAX            Largest value in NN.
       NMATS           The number of matrices generated so far.
       NERRS           The number of tests which have exceeded THRESH
                       so far.
       COND, IMODE     Values to be passed to the matrix generators.
       ANORM           Norm of A; passed to matrix generators.

       OVFL, UNFL      Overflow and underflow thresholds.
       ULP, ULPINV     Finest relative precision and its inverse.
       RTOVFL, RTUNFL  Square roots of the previous 2 values.
               The following four arrays decode JTYPE:
       KTYPE(j)        The general type (1-10) for type "j".
       KMODE(j)        The MODE value to be passed to the matrix
                       generator for type "j".
       KMAGN(j)        The order of magnitude ( O(1),
                       O(overflow^(1/2) ), O(underflow^(1/2) )
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 295 of file cchkhb.f.

298*
299* -- LAPACK test routine --
300* -- LAPACK is a software package provided by Univ. of Tennessee, --
301* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
302*
303* .. Scalar Arguments ..
304 INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES,
305 $ NWDTHS
306 REAL THRESH
307* ..
308* .. Array Arguments ..
309 LOGICAL DOTYPE( * )
310 INTEGER ISEED( 4 ), KK( * ), NN( * )
311 REAL RESULT( * ), RWORK( * ), SD( * ), SE( * )
312 COMPLEX A( LDA, * ), U( LDU, * ), WORK( * )
313* ..
314*
315* =====================================================================
316*
317* .. Parameters ..
318 COMPLEX CZERO, CONE
319 parameter( czero = ( 0.0e+0, 0.0e+0 ),
320 $ cone = ( 1.0e+0, 0.0e+0 ) )
321 REAL ZERO, ONE, TWO, TEN
322 parameter( zero = 0.0e+0, one = 1.0e+0, two = 2.0e+0,
323 $ ten = 10.0e+0 )
324 REAL HALF
325 parameter( half = one / two )
326 INTEGER MAXTYP
327 parameter( maxtyp = 15 )
328* ..
329* .. Local Scalars ..
330 LOGICAL BADNN, BADNNB
331 INTEGER I, IINFO, IMODE, ITYPE, J, JC, JCOL, JR, JSIZE,
332 $ JTYPE, JWIDTH, K, KMAX, MTYPES, N, NERRS,
333 $ NMATS, NMAX, NTEST, NTESTT
334 REAL ANINV, ANORM, COND, OVFL, RTOVFL, RTUNFL,
335 $ TEMP1, ULP, ULPINV, UNFL
336* ..
337* .. Local Arrays ..
338 INTEGER IDUMMA( 1 ), IOLDSD( 4 ), KMAGN( MAXTYP ),
339 $ KMODE( MAXTYP ), KTYPE( MAXTYP )
340* ..
341* .. External Functions ..
342 REAL SLAMCH
343 EXTERNAL slamch
344* ..
345* .. External Subroutines ..
346 EXTERNAL chbt21, chbtrd, clacpy, clatmr, clatms, claset,
347 $ slasum, xerbla
348* ..
349* .. Intrinsic Functions ..
350 INTRINSIC abs, conjg, max, min, real, sqrt
351* ..
352* .. Data statements ..
353 DATA ktype / 1, 2, 5*4, 5*5, 3*8 /
354 DATA kmagn / 2*1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 1,
355 $ 2, 3 /
356 DATA kmode / 2*0, 4, 3, 1, 4, 4, 4, 3, 1, 4, 4, 0,
357 $ 0, 0 /
358* ..
359* .. Executable Statements ..
360*
361* Check for errors
362*
363 ntestt = 0
364 info = 0
365*
366* Important constants
367*
368 badnn = .false.
369 nmax = 1
370 DO 10 j = 1, nsizes
371 nmax = max( nmax, nn( j ) )
372 IF( nn( j ).LT.0 )
373 $ badnn = .true.
374 10 CONTINUE
375*
376 badnnb = .false.
377 kmax = 0
378 DO 20 j = 1, nsizes
379 kmax = max( kmax, kk( j ) )
380 IF( kk( j ).LT.0 )
381 $ badnnb = .true.
382 20 CONTINUE
383 kmax = min( nmax-1, kmax )
384*
385* Check for errors
386*
387 IF( nsizes.LT.0 ) THEN
388 info = -1
389 ELSE IF( badnn ) THEN
390 info = -2
391 ELSE IF( nwdths.LT.0 ) THEN
392 info = -3
393 ELSE IF( badnnb ) THEN
394 info = -4
395 ELSE IF( ntypes.LT.0 ) THEN
396 info = -5
397 ELSE IF( lda.LT.kmax+1 ) THEN
398 info = -11
399 ELSE IF( ldu.LT.nmax ) THEN
400 info = -15
401 ELSE IF( ( max( lda, nmax )+1 )*nmax.GT.lwork ) THEN
402 info = -17
403 END IF
404*
405 IF( info.NE.0 ) THEN
406 CALL xerbla( 'CCHKHB', -info )
407 RETURN
408 END IF
409*
410* Quick return if possible
411*
412 IF( nsizes.EQ.0 .OR. ntypes.EQ.0 .OR. nwdths.EQ.0 )
413 $ RETURN
414*
415* More Important constants
416*
417 unfl = slamch( 'Safe minimum' )
418 ovfl = one / unfl
419 ulp = slamch( 'Epsilon' )*slamch( 'Base' )
420 ulpinv = one / ulp
421 rtunfl = sqrt( unfl )
422 rtovfl = sqrt( ovfl )
423*
424* Loop over sizes, types
425*
426 nerrs = 0
427 nmats = 0
428*
429 DO 190 jsize = 1, nsizes
430 n = nn( jsize )
431 aninv = one / real( max( 1, n ) )
432*
433 DO 180 jwidth = 1, nwdths
434 k = kk( jwidth )
435 IF( k.GT.n )
436 $ GO TO 180
437 k = max( 0, min( n-1, k ) )
438*
439 IF( nsizes.NE.1 ) THEN
440 mtypes = min( maxtyp, ntypes )
441 ELSE
442 mtypes = min( maxtyp+1, ntypes )
443 END IF
444*
445 DO 170 jtype = 1, mtypes
446 IF( .NOT.dotype( jtype ) )
447 $ GO TO 170
448 nmats = nmats + 1
449 ntest = 0
450*
451 DO 30 j = 1, 4
452 ioldsd( j ) = iseed( j )
453 30 CONTINUE
454*
455* Compute "A".
456* Store as "Upper"; later, we will copy to other format.
457*
458* Control parameters:
459*
460* KMAGN KMODE KTYPE
461* =1 O(1) clustered 1 zero
462* =2 large clustered 2 identity
463* =3 small exponential (none)
464* =4 arithmetic diagonal, (w/ eigenvalues)
465* =5 random log hermitian, w/ eigenvalues
466* =6 random (none)
467* =7 random diagonal
468* =8 random hermitian
469* =9 positive definite
470* =10 diagonally dominant tridiagonal
471*
472 IF( mtypes.GT.maxtyp )
473 $ GO TO 100
474*
475 itype = ktype( jtype )
476 imode = kmode( jtype )
477*
478* Compute norm
479*
480 GO TO ( 40, 50, 60 )kmagn( jtype )
481*
482 40 CONTINUE
483 anorm = one
484 GO TO 70
485*
486 50 CONTINUE
487 anorm = ( rtovfl*ulp )*aninv
488 GO TO 70
489*
490 60 CONTINUE
491 anorm = rtunfl*n*ulpinv
492 GO TO 70
493*
494 70 CONTINUE
495*
496 CALL claset( 'Full', lda, n, czero, czero, a, lda )
497 iinfo = 0
498 IF( jtype.LE.15 ) THEN
499 cond = ulpinv
500 ELSE
501 cond = ulpinv*aninv / ten
502 END IF
503*
504* Special Matrices -- Identity & Jordan block
505*
506* Zero
507*
508 IF( itype.EQ.1 ) THEN
509 iinfo = 0
510*
511 ELSE IF( itype.EQ.2 ) THEN
512*
513* Identity
514*
515 DO 80 jcol = 1, n
516 a( k+1, jcol ) = anorm
517 80 CONTINUE
518*
519 ELSE IF( itype.EQ.4 ) THEN
520*
521* Diagonal Matrix, [Eigen]values Specified
522*
523 CALL clatms( n, n, 'S', iseed, 'H', rwork, imode,
524 $ cond, anorm, 0, 0, 'Q', a( k+1, 1 ), lda,
525 $ work, iinfo )
526*
527 ELSE IF( itype.EQ.5 ) THEN
528*
529* Hermitian, eigenvalues specified
530*
531 CALL clatms( n, n, 'S', iseed, 'H', rwork, imode,
532 $ cond, anorm, k, k, 'Q', a, lda, work,
533 $ iinfo )
534*
535 ELSE IF( itype.EQ.7 ) THEN
536*
537* Diagonal, random eigenvalues
538*
539 CALL clatmr( n, n, 'S', iseed, 'H', work, 6, one,
540 $ cone, 'T', 'N', work( n+1 ), 1, one,
541 $ work( 2*n+1 ), 1, one, 'N', idumma, 0, 0,
542 $ zero, anorm, 'Q', a( k+1, 1 ), lda,
543 $ idumma, iinfo )
544*
545 ELSE IF( itype.EQ.8 ) THEN
546*
547* Hermitian, random eigenvalues
548*
549 CALL clatmr( n, n, 'S', iseed, 'H', work, 6, one,
550 $ cone, 'T', 'N', work( n+1 ), 1, one,
551 $ work( 2*n+1 ), 1, one, 'N', idumma, k, k,
552 $ zero, anorm, 'Q', a, lda, idumma, iinfo )
553*
554 ELSE IF( itype.EQ.9 ) THEN
555*
556* Positive definite, eigenvalues specified.
557*
558 CALL clatms( n, n, 'S', iseed, 'P', rwork, imode,
559 $ cond, anorm, k, k, 'Q', a, lda,
560 $ work( n+1 ), iinfo )
561*
562 ELSE IF( itype.EQ.10 ) THEN
563*
564* Positive definite tridiagonal, eigenvalues specified.
565*
566 IF( n.GT.1 )
567 $ k = max( 1, k )
568 CALL clatms( n, n, 'S', iseed, 'P', rwork, imode,
569 $ cond, anorm, 1, 1, 'Q', a( k, 1 ), lda,
570 $ work, iinfo )
571 DO 90 i = 2, n
572 temp1 = abs( a( k, i ) ) /
573 $ sqrt( abs( a( k+1, i-1 )*a( k+1, i ) ) )
574 IF( temp1.GT.half ) THEN
575 a( k, i ) = half*sqrt( abs( a( k+1,
576 $ i-1 )*a( k+1, i ) ) )
577 END IF
578 90 CONTINUE
579*
580 ELSE
581*
582 iinfo = 1
583 END IF
584*
585 IF( iinfo.NE.0 ) THEN
586 WRITE( nounit, fmt = 9999 )'Generator', iinfo, n,
587 $ jtype, ioldsd
588 info = abs( iinfo )
589 RETURN
590 END IF
591*
592 100 CONTINUE
593*
594* Call CHBTRD to compute S and U from upper triangle.
595*
596 CALL clacpy( ' ', k+1, n, a, lda, work, lda )
597*
598 ntest = 1
599 CALL chbtrd( 'V', 'U', n, k, work, lda, sd, se, u, ldu,
600 $ work( lda*n+1 ), iinfo )
601*
602 IF( iinfo.NE.0 ) THEN
603 WRITE( nounit, fmt = 9999 )'CHBTRD(U)', iinfo, n,
604 $ jtype, ioldsd
605 info = abs( iinfo )
606 IF( iinfo.LT.0 ) THEN
607 RETURN
608 ELSE
609 result( 1 ) = ulpinv
610 GO TO 150
611 END IF
612 END IF
613*
614* Do tests 1 and 2
615*
616 CALL chbt21( 'Upper', n, k, 1, a, lda, sd, se, u, ldu,
617 $ work, rwork, result( 1 ) )
618*
619* Convert A from Upper-Triangle-Only storage to
620* Lower-Triangle-Only storage.
621*
622 DO 120 jc = 1, n
623 DO 110 jr = 0, min( k, n-jc )
624 a( jr+1, jc ) = conjg( a( k+1-jr, jc+jr ) )
625 110 CONTINUE
626 120 CONTINUE
627 DO 140 jc = n + 1 - k, n
628 DO 130 jr = min( k, n-jc ) + 1, k
629 a( jr+1, jc ) = zero
630 130 CONTINUE
631 140 CONTINUE
632*
633* Call CHBTRD to compute S and U from lower triangle
634*
635 CALL clacpy( ' ', k+1, n, a, lda, work, lda )
636*
637 ntest = 3
638 CALL chbtrd( 'V', 'L', n, k, work, lda, sd, se, u, ldu,
639 $ work( lda*n+1 ), iinfo )
640*
641 IF( iinfo.NE.0 ) THEN
642 WRITE( nounit, fmt = 9999 )'CHBTRD(L)', iinfo, n,
643 $ jtype, ioldsd
644 info = abs( iinfo )
645 IF( iinfo.LT.0 ) THEN
646 RETURN
647 ELSE
648 result( 3 ) = ulpinv
649 GO TO 150
650 END IF
651 END IF
652 ntest = 4
653*
654* Do tests 3 and 4
655*
656 CALL chbt21( 'Lower', n, k, 1, a, lda, sd, se, u, ldu,
657 $ work, rwork, result( 3 ) )
658*
659* End of Loop -- Check for RESULT(j) > THRESH
660*
661 150 CONTINUE
662 ntestt = ntestt + ntest
663*
664* Print out tests which fail.
665*
666 DO 160 jr = 1, ntest
667 IF( result( jr ).GE.thresh ) THEN
668*
669* If this is the first test to fail,
670* print a header to the data file.
671*
672 IF( nerrs.EQ.0 ) THEN
673 WRITE( nounit, fmt = 9998 )'CHB'
674 WRITE( nounit, fmt = 9997 )
675 WRITE( nounit, fmt = 9996 )
676 WRITE( nounit, fmt = 9995 )'Hermitian'
677 WRITE( nounit, fmt = 9994 )'unitary', '*',
678 $ 'conjugate transpose', ( '*', j = 1, 4 )
679 END IF
680 nerrs = nerrs + 1
681 WRITE( nounit, fmt = 9993 )n, k, ioldsd, jtype,
682 $ jr, result( jr )
683 END IF
684 160 CONTINUE
685*
686 170 CONTINUE
687 180 CONTINUE
688 190 CONTINUE
689*
690* Summary
691*
692 CALL slasum( 'CHB', nounit, nerrs, ntestt )
693 RETURN
694*
695 9999 FORMAT( ' CCHKHB: ', a, ' returned INFO=', i6, '.', / 9x, 'N=',
696 $ i6, ', JTYPE=', i6, ', ISEED=(', 3( i5, ',' ), i5, ')' )
697 9998 FORMAT( / 1x, a3,
698 $ ' -- Complex Hermitian Banded Tridiagonal Reduction Routines'
699 $ )
700 9997 FORMAT( ' Matrix types (see SCHK23 for details): ' )
701*
702 9996 FORMAT( / ' Special Matrices:',
703 $ / ' 1=Zero matrix. ',
704 $ ' 5=Diagonal: clustered entries.',
705 $ / ' 2=Identity matrix. ',
706 $ ' 6=Diagonal: large, evenly spaced.',
707 $ / ' 3=Diagonal: evenly spaced entries. ',
708 $ ' 7=Diagonal: small, evenly spaced.',
709 $ / ' 4=Diagonal: geometr. spaced entries.' )
710 9995 FORMAT( ' Dense ', a, ' Banded Matrices:',
711 $ / ' 8=Evenly spaced eigenvals. ',
712 $ ' 12=Small, evenly spaced eigenvals.',
713 $ / ' 9=Geometrically spaced eigenvals. ',
714 $ ' 13=Matrix with random O(1) entries.',
715 $ / ' 10=Clustered eigenvalues. ',
716 $ ' 14=Matrix with large random entries.',
717 $ / ' 11=Large, evenly spaced eigenvals. ',
718 $ ' 15=Matrix with small random entries.' )
719*
720 9994 FORMAT( / ' Tests performed: (S is Tridiag, U is ', a, ',',
721 $ / 20x, a, ' means ', a, '.', / ' UPLO=''U'':',
722 $ / ' 1= | A - U S U', a1, ' | / ( |A| n ulp ) ',
723 $ ' 2= | I - U U', a1, ' | / ( n ulp )', / ' UPLO=''L'':',
724 $ / ' 3= | A - U S U', a1, ' | / ( |A| n ulp ) ',
725 $ ' 4= | I - U U', a1, ' | / ( n ulp )' )
726 9993 FORMAT( ' N=', i5, ', K=', i4, ', seed=', 4( i4, ',' ), ' type ',
727 $ i2, ', test(', i2, ')=', g10.3 )
728*
729* End of CCHKHB
730*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine chbt21(uplo, n, ka, ks, a, lda, d, e, u, ldu, work, rwork, result)
CHBT21
Definition chbt21.f:152
subroutine clatmr(m, n, dist, iseed, sym, d, mode, cond, dmax, rsign, grade, dl, model, condl, dr, moder, condr, pivtng, ipivot, kl, ku, sparse, anorm, pack, a, lda, iwork, info)
CLATMR
Definition clatmr.f:490
subroutine clatms(m, n, dist, iseed, sym, d, mode, cond, dmax, kl, ku, pack, a, lda, work, info)
CLATMS
Definition clatms.f:332
subroutine chbtrd(vect, uplo, n, kd, ab, ldab, d, e, q, ldq, work, info)
CHBTRD
Definition chbtrd.f:163
subroutine clacpy(uplo, m, n, a, lda, b, ldb)
CLACPY copies all or part of one two-dimensional array to another.
Definition clacpy.f:103
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine claset(uplo, m, n, alpha, beta, a, lda)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition claset.f:106
subroutine slasum(type, iounit, ie, nrun)
SLASUM
Definition slasum.f:41
Here is the call graph for this function:
Here is the caller graph for this function: