LAPACK  3.10.1 LAPACK: Linear Algebra PACKage
zdrvac.f
Go to the documentation of this file.
1 *> \brief \b ZDRVAC
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE ZDRVAC( DOTYPE, NM, MVAL, NNS, NSVAL, THRESH, NMAX,
12 * A, AFAC, B, X, WORK,
13 * RWORK, SWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * INTEGER NMAX, NM, NNS, NOUT
17 * DOUBLE PRECISION THRESH
18 * ..
19 * .. Array Arguments ..
20 * LOGICAL DOTYPE( * )
21 * INTEGER MVAL( * ), NSVAL( * )
22 * DOUBLE PRECISION RWORK( * )
23 * COMPLEX SWORK(*)
24 * COMPLEX*16 A( * ), AFAC( * ), B( * ),
25 * \$ WORK( * ), X( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> ZDRVAC tests ZCPOSV.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NM
49 *> \verbatim
50 *> NM is INTEGER
51 *> The number of values of N contained in the vector MVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] MVAL
55 *> \verbatim
56 *> MVAL is INTEGER array, dimension (NM)
57 *> The values of the matrix dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NNS
61 *> \verbatim
62 *> NNS is INTEGER
63 *> The number of values of NRHS contained in the vector NSVAL.
64 *> \endverbatim
65 *>
66 *> \param[in] NSVAL
67 *> \verbatim
68 *> NSVAL is INTEGER array, dimension (NNS)
69 *> The values of the number of right hand sides NRHS.
70 *> \endverbatim
71 *>
72 *> \param[in] THRESH
73 *> \verbatim
74 *> THRESH is DOUBLE PRECISION
75 *> The threshold value for the test ratios. A result is
76 *> included in the output file if RESULT >= THRESH. To have
77 *> every test ratio printed, use THRESH = 0.
78 *> \endverbatim
79 *>
80 *> \param[in] NMAX
81 *> \verbatim
82 *> NMAX is INTEGER
83 *> The maximum value permitted for N, used in dimensioning the
84 *> work arrays.
85 *> \endverbatim
86 *>
87 *> \param[out] A
88 *> \verbatim
89 *> A is COMPLEX*16 array, dimension (NMAX*NMAX)
90 *> \endverbatim
91 *>
92 *> \param[out] AFAC
93 *> \verbatim
94 *> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
95 *> \endverbatim
96 *>
97 *> \param[out] B
98 *> \verbatim
99 *> B is COMPLEX*16 array, dimension (NMAX*NSMAX)
100 *> \endverbatim
101 *>
102 *> \param[out] X
103 *> \verbatim
104 *> X is COMPLEX*16 array, dimension (NMAX*NSMAX)
105 *> \endverbatim
106 *>
107 *> \param[out] WORK
108 *> \verbatim
109 *> WORK is COMPLEX*16 array, dimension
110 *> (NMAX*max(3,NSMAX))
111 *> \endverbatim
112 *>
113 *> \param[out] RWORK
114 *> \verbatim
115 *> RWORK is DOUBLE PRECISION array, dimension
116 *> (max(2*NMAX,2*NSMAX+NWORK))
117 *> \endverbatim
118 *>
119 *> \param[out] SWORK
120 *> \verbatim
121 *> SWORK is COMPLEX array, dimension
122 *> (NMAX*(NSMAX+NMAX))
123 *> \endverbatim
124 *>
125 *> \param[in] NOUT
126 *> \verbatim
127 *> NOUT is INTEGER
128 *> The unit number for output.
129 *> \endverbatim
130 *
131 * Authors:
132 * ========
133 *
134 *> \author Univ. of Tennessee
135 *> \author Univ. of California Berkeley
136 *> \author Univ. of Colorado Denver
137 *> \author NAG Ltd.
138 *
139 *> \ingroup complex16_lin
140 *
141 * =====================================================================
142  SUBROUTINE zdrvac( DOTYPE, NM, MVAL, NNS, NSVAL, THRESH, NMAX,
143  \$ A, AFAC, B, X, WORK,
144  \$ RWORK, SWORK, NOUT )
145 *
146 * -- LAPACK test routine --
147 * -- LAPACK is a software package provided by Univ. of Tennessee, --
148 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
149 *
150 * .. Scalar Arguments ..
151  INTEGER NMAX, NM, NNS, NOUT
152  DOUBLE PRECISION THRESH
153 * ..
154 * .. Array Arguments ..
155  LOGICAL DOTYPE( * )
156  INTEGER MVAL( * ), NSVAL( * )
157  DOUBLE PRECISION RWORK( * )
158  COMPLEX SWORK(*)
159  COMPLEX*16 A( * ), AFAC( * ), B( * ),
160  \$ work( * ), x( * )
161 * ..
162 *
163 * =====================================================================
164 *
165 * .. Parameters ..
166  DOUBLE PRECISION ZERO
167  PARAMETER ( ZERO = 0.0d+0 )
168  INTEGER NTYPES
169  parameter( ntypes = 9 )
170  INTEGER NTESTS
171  parameter( ntests = 1 )
172 * ..
173 * .. Local Scalars ..
174  LOGICAL ZEROT
175  CHARACTER DIST, TYPE, UPLO, XTYPE
176  CHARACTER*3 PATH
177  INTEGER I, IM, IMAT, INFO, IOFF, IRHS, IUPLO,
178  \$ izero, kl, ku, lda, mode, n,
179  \$ nerrs, nfail, nimat, nrhs, nrun
180  DOUBLE PRECISION ANORM, CNDNUM
181 * ..
182 * .. Local Arrays ..
183  CHARACTER UPLOS( 2 )
184  INTEGER ISEED( 4 ), ISEEDY( 4 )
185  DOUBLE PRECISION RESULT( NTESTS )
186 * ..
187 * .. Local Variables ..
188  INTEGER ITER, KASE
189 * ..
190 * .. External Subroutines ..
191  EXTERNAL alaerh, zlacpy, zlaipd,
192  \$ zlarhs, zlatb4, zlatms,
193  \$ zpot06, zcposv
194 * ..
195 * .. Intrinsic Functions ..
196  INTRINSIC dble, max, sqrt
197 * ..
198 * .. Scalars in Common ..
199  LOGICAL LERR, OK
200  CHARACTER*32 SRNAMT
201  INTEGER INFOT, NUNIT
202 * ..
203 * .. Common blocks ..
204  COMMON / infoc / infot, nunit, ok, lerr
205  COMMON / srnamc / srnamt
206 * ..
207 * .. Data statements ..
208  DATA iseedy / 1988, 1989, 1990, 1991 /
209  DATA uplos / 'U', 'L' /
210 * ..
211 * .. Executable Statements ..
212 *
213 * Initialize constants and the random number seed.
214 *
215  kase = 0
216  path( 1: 1 ) = 'Zomplex precision'
217  path( 2: 3 ) = 'PO'
218  nrun = 0
219  nfail = 0
220  nerrs = 0
221  DO 10 i = 1, 4
222  iseed( i ) = iseedy( i )
223  10 CONTINUE
224 *
225  infot = 0
226 *
227 * Do for each value of N in MVAL
228 *
229  DO 120 im = 1, nm
230  n = mval( im )
231  lda = max( n, 1 )
232  nimat = ntypes
233  IF( n.LE.0 )
234  \$ nimat = 1
235 *
236  DO 110 imat = 1, nimat
237 *
238 * Do the tests only if DOTYPE( IMAT ) is true.
239 *
240  IF( .NOT.dotype( imat ) )
241  \$ GO TO 110
242 *
243 * Skip types 3, 4, or 5 if the matrix size is too small.
244 *
245  zerot = imat.GE.3 .AND. imat.LE.5
246  IF( zerot .AND. n.LT.imat-2 )
247  \$ GO TO 110
248 *
249 * Do first for UPLO = 'U', then for UPLO = 'L'
250 *
251  DO 100 iuplo = 1, 2
252  uplo = uplos( iuplo )
253 *
254 * Set up parameters with ZLATB4 and generate a test matrix
255 * with ZLATMS.
256 *
257  CALL zlatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
258  \$ cndnum, dist )
259 *
260  srnamt = 'ZLATMS'
261  CALL zlatms( n, n, dist, iseed, TYPE, rwork, mode,
262  \$ cndnum, anorm, kl, ku, uplo, a, lda, work,
263  \$ info )
264 *
265 * Check error code from ZLATMS.
266 *
267  IF( info.NE.0 ) THEN
268  CALL alaerh( path, 'ZLATMS', info, 0, uplo, n, n, -1,
269  \$ -1, -1, imat, nfail, nerrs, nout )
270  GO TO 100
271  END IF
272 *
273 * For types 3-5, zero one row and column of the matrix to
274 * test that INFO is returned correctly.
275 *
276  IF( zerot ) THEN
277  IF( imat.EQ.3 ) THEN
278  izero = 1
279  ELSE IF( imat.EQ.4 ) THEN
280  izero = n
281  ELSE
282  izero = n / 2 + 1
283  END IF
284  ioff = ( izero-1 )*lda
285 *
286 * Set row and column IZERO of A to 0.
287 *
288  IF( iuplo.EQ.1 ) THEN
289  DO 20 i = 1, izero - 1
290  a( ioff+i ) = zero
291  20 CONTINUE
292  ioff = ioff + izero
293  DO 30 i = izero, n
294  a( ioff ) = zero
295  ioff = ioff + lda
296  30 CONTINUE
297  ELSE
298  ioff = izero
299  DO 40 i = 1, izero - 1
300  a( ioff ) = zero
301  ioff = ioff + lda
302  40 CONTINUE
303  ioff = ioff - izero
304  DO 50 i = izero, n
305  a( ioff+i ) = zero
306  50 CONTINUE
307  END IF
308  ELSE
309  izero = 0
310  END IF
311 *
312 * Set the imaginary part of the diagonals.
313 *
314  CALL zlaipd( n, a, lda+1, 0 )
315 *
316  DO 60 irhs = 1, nns
317  nrhs = nsval( irhs )
318  xtype = 'N'
319 *
320 * Form an exact solution and set the right hand side.
321 *
322  srnamt = 'ZLARHS'
323  CALL zlarhs( path, xtype, uplo, ' ', n, n, kl, ku,
324  \$ nrhs, a, lda, x, lda, b, lda,
325  \$ iseed, info )
326 *
327 * Compute the L*L' or U'*U factorization of the
328 * matrix and solve the system.
329 *
330  srnamt = 'ZCPOSV '
331  kase = kase + 1
332 *
333  CALL zlacpy( 'All', n, n, a, lda, afac, lda)
334 *
335  CALL zcposv( uplo, n, nrhs, afac, lda, b, lda, x, lda,
336  \$ work, swork, rwork, iter, info )
337 *
338  IF (iter.LT.0) THEN
339  CALL zlacpy( 'All', n, n, a, lda, afac, lda )
340  ENDIF
341 *
342 * Check error code from ZCPOSV .
343 *
344  IF( info.NE.izero ) THEN
345 *
346  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
347  \$ CALL alahd( nout, path )
348  nerrs = nerrs + 1
349 *
350  IF( info.NE.izero .AND. izero.NE.0 ) THEN
351  WRITE( nout, fmt = 9988 )'ZCPOSV',info,izero,n,
352  \$ imat
353  ELSE
354  WRITE( nout, fmt = 9975 )'ZCPOSV',info,n,imat
355  END IF
356  END IF
357 *
358 * Skip the remaining test if the matrix is singular.
359 *
360  IF( info.NE.0 )
361  \$ GO TO 110
362 *
363 * Check the quality of the solution
364 *
365  CALL zlacpy( 'All', n, nrhs, b, lda, work, lda )
366 *
367  CALL zpot06( uplo, n, nrhs, a, lda, x, lda, work,
368  \$ lda, rwork, result( 1 ) )
369 *
370 * Check if the test passes the tesing.
371 * Print information about the tests that did not
372 * pass the testing.
373 *
374 * If iterative refinement has been used and claimed to
375 * be successful (ITER>0), we want
376 * NORM1(B - A*X)/(NORM1(A)*NORM1(X)*EPS*SRQT(N)) < 1
377 *
378 * If double precision has been used (ITER<0), we want
379 * NORM1(B - A*X)/(NORM1(A)*NORM1(X)*EPS) < THRES
380 * (Cf. the linear solver testing routines)
381 *
382  IF ((thresh.LE.0.0e+00)
383  \$ .OR.((iter.GE.0).AND.(n.GT.0)
384  \$ .AND.(result(1).GE.sqrt(dble(n))))
385  \$ .OR.((iter.LT.0).AND.(result(1).GE.thresh))) THEN
386 *
387  IF( nfail.EQ.0 .AND. nerrs.EQ.0 ) THEN
388  WRITE( nout, fmt = 8999 )'ZPO'
389  WRITE( nout, fmt = '( '' Matrix types:'' )' )
390  WRITE( nout, fmt = 8979 )
391  WRITE( nout, fmt = '( '' Test ratios:'' )' )
392  WRITE( nout, fmt = 8960 )1
393  WRITE( nout, fmt = '( '' Messages:'' )' )
394  END IF
395 *
396  WRITE( nout, fmt = 9998 )uplo, n, nrhs, imat, 1,
397  \$ result( 1 )
398 *
399  nfail = nfail + 1
400 *
401  END IF
402 *
403  nrun = nrun + 1
404 *
405  60 CONTINUE
406  100 CONTINUE
407  110 CONTINUE
408  120 CONTINUE
409 *
410 * Print a summary of the results.
411 *
412  IF( nfail.GT.0 ) THEN
413  WRITE( nout, fmt = 9996 )'ZCPOSV', nfail, nrun
414  ELSE
415  WRITE( nout, fmt = 9995 )'ZCPOSV', nrun
416  END IF
417  IF( nerrs.GT.0 ) THEN
418  WRITE( nout, fmt = 9994 )nerrs
419  END IF
420 *
421  9998 FORMAT( ' UPLO=''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
422  \$ i2, ', test(', i2, ') =', g12.5 )
423  9996 FORMAT( 1x, a6, ': ', i6, ' out of ', i6,
424  \$ ' tests failed to pass the threshold' )
425  9995 FORMAT( /1x, 'All tests for ', a6,
426  \$ ' routines passed the threshold ( ', i6, ' tests run)' )
427  9994 FORMAT( 6x, i6, ' error messages recorded' )
428 *
429 * SUBNAM, INFO, INFOE, N, IMAT
430 *
431  9988 FORMAT( ' *** ', a6, ' returned with INFO =', i5, ' instead of ',
432  \$ i5, / ' ==> N =', i5, ', type ',
433  \$ i2 )
434 *
435 * SUBNAM, INFO, N, IMAT
436 *
437  9975 FORMAT( ' *** Error code from ', a6, '=', i5, ' for M=', i5,
438  \$ ', type ', i2 )
439  8999 FORMAT( / 1x, a3, ': positive definite dense matrices' )
440  8979 FORMAT( 4x, '1. Diagonal', 24x, '7. Last n/2 columns zero', / 4x,
441  \$ '2. Upper triangular', 16x,
442  \$ '8. Random, CNDNUM = sqrt(0.1/EPS)', / 4x,
443  \$ '3. Lower triangular', 16x, '9. Random, CNDNUM = 0.1/EPS',
444  \$ / 4x, '4. Random, CNDNUM = 2', 13x,
445  \$ '10. Scaled near underflow', / 4x, '5. First column zero',
446  \$ 14x, '11. Scaled near overflow', / 4x,
447  \$ '6. Last column zero' )
448  8960 FORMAT( 3x, i2, ': norm_1( B - A * X ) / ',
449  \$ '( norm_1(A) * norm_1(X) * EPS * SQRT(N) ) > 1 if ITERREF',
450  \$ / 4x, 'or norm_1( B - A * X ) / ',
451  \$ '( norm_1(A) * norm_1(X) * EPS ) > THRES if ZPOTRF' )
452
453  RETURN
454 *
455 * End of ZDRVAC
456 *
457  END
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:107
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine zlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
ZLARHS
Definition: zlarhs.f:208
subroutine zdrvac(DOTYPE, NM, MVAL, NNS, NSVAL, THRESH, NMAX, A, AFAC, B, X, WORK, RWORK, SWORK, NOUT)
ZDRVAC
Definition: zdrvac.f:145
subroutine zlaipd(N, A, INDA, VINDA)
ZLAIPD
Definition: zlaipd.f:83
subroutine zlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
ZLATB4
Definition: zlatb4.f:121
subroutine zpot06(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
ZPOT06
Definition: zpot06.f:127
subroutine zlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
ZLATMS
Definition: zlatms.f:332
subroutine zlacpy(UPLO, M, N, A, LDA, B, LDB)
ZLACPY copies all or part of one two-dimensional array to another.
Definition: zlacpy.f:103
subroutine zcposv(UPLO, N, NRHS, A, LDA, B, LDB, X, LDX, WORK, SWORK, RWORK, ITER, INFO)
ZCPOSV computes the solution to system of linear equations A * X = B for PO matrices
Definition: zcposv.f:209