LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zlaswlq.f
Go to the documentation of this file.
1*> \brief \b ZLASWLQ
2*
3* Definition:
4* ===========
5*
6* SUBROUTINE ZLASWLQ( M, N, MB, NB, A, LDA, T, LDT, WORK,
7* LWORK, INFO)
8*
9* .. Scalar Arguments ..
10* INTEGER INFO, LDA, M, N, MB, NB, LDT, LWORK
11* ..
12* .. Array Arguments ..
13* COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
14* ..
15*
16*
17*> \par Purpose:
18* =============
19*>
20*> \verbatim
21*>
22*> ZLASWLQ computes a blocked Tall-Skinny LQ factorization of
23*> a complexx M-by-N matrix A for M <= N:
24*>
25*> A = ( L 0 ) * Q,
26*>
27*> where:
28*>
29*> Q is a n-by-N orthogonal matrix, stored on exit in an implicit
30*> form in the elements above the diagonal of the array A and in
31*> the elements of the array T;
32*> L is a lower-triangular M-by-M matrix stored on exit in
33*> the elements on and below the diagonal of the array A.
34*> 0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
35*>
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] M
42*> \verbatim
43*> M is INTEGER
44*> The number of rows of the matrix A. M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The number of columns of the matrix A. N >= M >= 0.
51*> \endverbatim
52*>
53*> \param[in] MB
54*> \verbatim
55*> MB is INTEGER
56*> The row block size to be used in the blocked QR.
57*> M >= MB >= 1
58*> \endverbatim
59*> \param[in] NB
60*> \verbatim
61*> NB is INTEGER
62*> The column block size to be used in the blocked QR.
63*> NB > 0.
64*> \endverbatim
65*>
66*> \param[in,out] A
67*> \verbatim
68*> A is COMPLEX*16 array, dimension (LDA,N)
69*> On entry, the M-by-N matrix A.
70*> On exit, the elements on and below the diagonal
71*> of the array contain the N-by-N lower triangular matrix L;
72*> the elements above the diagonal represent Q by the rows
73*> of blocked V (see Further Details).
74*>
75*> \endverbatim
76*>
77*> \param[in] LDA
78*> \verbatim
79*> LDA is INTEGER
80*> The leading dimension of the array A. LDA >= max(1,M).
81*> \endverbatim
82*>
83*> \param[out] T
84*> \verbatim
85*> T is COMPLEX*16 array,
86*> dimension (LDT, N * Number_of_row_blocks)
87*> where Number_of_row_blocks = CEIL((N-M)/(NB-M))
88*> The blocked upper triangular block reflectors stored in compact form
89*> as a sequence of upper triangular blocks.
90*> See Further Details below.
91*> \endverbatim
92*>
93*> \param[in] LDT
94*> \verbatim
95*> LDT is INTEGER
96*> The leading dimension of the array T. LDT >= MB.
97*> \endverbatim
98*>
99*> \param[out] WORK
100*> \verbatim
101*> (workspace) COMPLEX*16 array, dimension (MAX(1,LWORK))
102*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
103*> \endverbatim
104*> \param[in] LWORK
105*> \verbatim
106*> LWORK is INTEGER
107*> The dimension of the array WORK.
108*> LWORK >= 1, if MIN(M,N) = 0, and LWORK >= MB*M, otherwise.
109*>
110*> If LWORK = -1, then a workspace query is assumed; the routine
111*> only calculates the minimal size of the WORK array, returns
112*> this value as the first entry of the WORK array, and no error
113*> message related to LWORK is issued by XERBLA.
114*> \endverbatim
115*>
116*> \param[out] INFO
117*> \verbatim
118*> INFO is INTEGER
119*> = 0: successful exit
120*> < 0: if INFO = -i, the i-th argument had an illegal value
121*> \endverbatim
122*
123* Authors:
124* ========
125*
126*> \author Univ. of Tennessee
127*> \author Univ. of California Berkeley
128*> \author Univ. of Colorado Denver
129*> \author NAG Ltd.
130*
131*> \par Further Details:
132* =====================
133*>
134*> \verbatim
135*> Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
136*> representing Q as a product of other orthogonal matrices
137*> Q = Q(1) * Q(2) * . . . * Q(k)
138*> where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
139*> Q(1) zeros out the upper diagonal entries of rows 1:NB of A
140*> Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
141*> Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
142*> . . .
143*>
144*> Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
145*> stored under the diagonal of rows 1:MB of A, and by upper triangular
146*> block reflectors, stored in array T(1:LDT,1:N).
147*> For more information see Further Details in GELQT.
148*>
149*> Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
150*> stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
151*> block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
152*> The last Q(k) may use fewer rows.
153*> For more information see Further Details in TPQRT.
154*>
155*> For more details of the overall algorithm, see the description of
156*> Sequential TSQR in Section 2.2 of [1].
157*>
158*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
159*> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
160*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
161*> \endverbatim
162*>
163*> \ingroup laswlq
164*>
165* =====================================================================
166 SUBROUTINE zlaswlq( M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK,
167 $ INFO )
168*
169* -- LAPACK computational routine --
170* -- LAPACK is a software package provided by Univ. of Tennessee, --
171* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
172*
173* .. Scalar Arguments ..
174 INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
175* ..
176* .. Array Arguments ..
177 COMPLEX*16 A( LDA, * ), WORK( * ), T( LDT, * )
178* ..
179*
180* =====================================================================
181*
182* ..
183* .. Local Scalars ..
184 LOGICAL LQUERY
185 INTEGER I, II, KK, CTR, MINMN, LWMIN
186* ..
187* .. EXTERNAL FUNCTIONS ..
188 LOGICAL LSAME
189 EXTERNAL lsame
190* ..
191* .. EXTERNAL SUBROUTINES ..
192 EXTERNAL zgelqt, ztplqt, xerbla
193* ..
194* .. INTRINSIC FUNCTIONS ..
195 INTRINSIC max, min, mod
196* ..
197* .. EXECUTABLE STATEMENTS ..
198*
199* TEST THE INPUT ARGUMENTS
200*
201 info = 0
202*
203 lquery = ( lwork.EQ.-1 )
204*
205 minmn = min( m, n )
206 IF( minmn.EQ.0 ) THEN
207 lwmin = 1
208 ELSE
209 lwmin = m*mb
210 END IF
211*
212 IF( m.LT.0 ) THEN
213 info = -1
214 ELSE IF( n.LT.0 .OR. n.LT.m ) THEN
215 info = -2
216 ELSE IF( mb.LT.1 .OR. ( mb.GT.m .AND. m.GT.0 ) ) THEN
217 info = -3
218 ELSE IF( nb.LE.0 ) THEN
219 info = -4
220 ELSE IF( lda.LT.max( 1, m ) ) THEN
221 info = -6
222 ELSE IF( ldt.LT.mb ) THEN
223 info = -8
224 ELSE IF( lwork.LT.lwmin .AND. (.NOT.lquery) ) THEN
225 info = -10
226 END IF
227*
228 IF( info.EQ.0 ) THEN
229 work( 1 ) = lwmin
230 END IF
231*
232 IF( info.NE.0 ) THEN
233 CALL xerbla( 'ZLASWLQ', -info )
234 RETURN
235 ELSE IF( lquery ) THEN
236 RETURN
237 END IF
238*
239* Quick return if possible
240*
241 IF( minmn.EQ.0 ) THEN
242 RETURN
243 END IF
244*
245* The LQ Decomposition
246*
247 IF( (m.GE.n) .OR. (nb.LE.m) .OR. (nb.GE.n) ) THEN
248 CALL zgelqt( m, n, mb, a, lda, t, ldt, work, info )
249 RETURN
250 END IF
251*
252 kk = mod((n-m),(nb-m))
253 ii = n-kk+1
254*
255* Compute the LQ factorization of the first block A(1:M,1:NB)
256*
257 CALL zgelqt( m, nb, mb, a(1,1), lda, t, ldt, work, info )
258 ctr = 1
259*
260 DO i = nb+1, ii-nb+m, (nb-m)
261*
262* Compute the QR factorization of the current block A(1:M,I:I+NB-M)
263*
264 CALL ztplqt( m, nb-m, 0, mb, a(1,1), lda, a( 1, i ),
265 $ lda, t(1, ctr * m + 1),
266 $ ldt, work, info )
267 ctr = ctr + 1
268 END DO
269*
270* Compute the QR factorization of the last block A(1:M,II:N)
271*
272 IF( ii.LE.n ) THEN
273 CALL ztplqt( m, kk, 0, mb, a(1,1), lda, a( 1, ii ),
274 $ lda, t(1, ctr * m + 1), ldt,
275 $ work, info )
276 END IF
277*
278 work( 1 ) = lwmin
279 RETURN
280*
281* End of ZLASWLQ
282*
283 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine zgelqt(m, n, mb, a, lda, t, ldt, work, info)
ZGELQT
Definition zgelqt.f:137
subroutine zlaswlq(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
ZLASWLQ
Definition zlaswlq.f:168
subroutine ztplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
ZTPLQT
Definition ztplqt.f:187