LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zgelqt.f
Go to the documentation of this file.
1*> \brief \b ZGELQT
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download ZGELQT + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgelqt.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgelqt.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgelqt.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE ZGELQT( M, N, MB, A, LDA, T, LDT, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, LDA, LDT, M, N, MB
23* ..
24* .. Array Arguments ..
25* COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> ZGELQT computes a blocked LQ factorization of a complex M-by-N matrix A
35*> using the compact WY representation of Q.
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] M
42*> \verbatim
43*> M is INTEGER
44*> The number of rows of the matrix A. M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The number of columns of the matrix A. N >= 0.
51*> \endverbatim
52*>
53*> \param[in] MB
54*> \verbatim
55*> MB is INTEGER
56*> The block size to be used in the blocked QR. MIN(M,N) >= MB >= 1.
57*> \endverbatim
58*>
59*> \param[in,out] A
60*> \verbatim
61*> A is COMPLEX*16 array, dimension (LDA,N)
62*> On entry, the M-by-N matrix A.
63*> On exit, the elements on and below the diagonal of the array
64*> contain the M-by-MIN(M,N) lower trapezoidal matrix L (L is
65*> lower triangular if M <= N); the elements above the diagonal
66*> are the rows of V.
67*> \endverbatim
68*>
69*> \param[in] LDA
70*> \verbatim
71*> LDA is INTEGER
72*> The leading dimension of the array A. LDA >= max(1,M).
73*> \endverbatim
74*>
75*> \param[out] T
76*> \verbatim
77*> T is COMPLEX*16 array, dimension (LDT,MIN(M,N))
78*> The upper triangular block reflectors stored in compact form
79*> as a sequence of upper triangular blocks. See below
80*> for further details.
81*> \endverbatim
82*>
83*> \param[in] LDT
84*> \verbatim
85*> LDT is INTEGER
86*> The leading dimension of the array T. LDT >= MB.
87*> \endverbatim
88*>
89*> \param[out] WORK
90*> \verbatim
91*> WORK is COMPLEX*16 array, dimension (MB*N)
92*> \endverbatim
93*>
94*> \param[out] INFO
95*> \verbatim
96*> INFO is INTEGER
97*> = 0: successful exit
98*> < 0: if INFO = -i, the i-th argument had an illegal value
99*> \endverbatim
100*
101* Authors:
102* ========
103*
104*> \author Univ. of Tennessee
105*> \author Univ. of California Berkeley
106*> \author Univ. of Colorado Denver
107*> \author NAG Ltd.
108*
109*> \ingroup gelqt
110*
111*> \par Further Details:
112* =====================
113*>
114*> \verbatim
115*>
116*> The matrix V stores the elementary reflectors H(i) in the i-th row
117*> above the diagonal. For example, if M=5 and N=3, the matrix V is
118*>
119*> V = ( 1 v1 v1 v1 v1 )
120*> ( 1 v2 v2 v2 )
121*> ( 1 v3 v3 )
122*>
123*>
124*> where the vi's represent the vectors which define H(i), which are returned
125*> in the matrix A. The 1's along the diagonal of V are not stored in A.
126*> Let K=MIN(M,N). The number of blocks is B = ceiling(K/MB), where each
127*> block is of order MB except for the last block, which is of order
128*> IB = K - (B-1)*MB. For each of the B blocks, a upper triangular block
129*> reflector factor is computed: T1, T2, ..., TB. The MB-by-MB (and IB-by-IB
130*> for the last block) T's are stored in the MB-by-K matrix T as
131*>
132*> T = (T1 T2 ... TB).
133*> \endverbatim
134*>
135* =====================================================================
136 SUBROUTINE zgelqt( M, N, MB, A, LDA, T, LDT, WORK, INFO )
137*
138* -- LAPACK computational routine --
139* -- LAPACK is a software package provided by Univ. of Tennessee, --
140* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
141*
142* .. Scalar Arguments ..
143 INTEGER INFO, LDA, LDT, M, N, MB
144* ..
145* .. Array Arguments ..
146 COMPLEX*16 A( LDA, * ), T( LDT, * ), WORK( * )
147* ..
148*
149* =====================================================================
150*
151* ..
152* .. Local Scalars ..
153 INTEGER I, IB, IINFO, K
154* ..
155* .. External Subroutines ..
156 EXTERNAL zgelqt3, zlarfb, xerbla
157* ..
158* .. Executable Statements ..
159*
160* Test the input arguments
161*
162 info = 0
163 IF( m.LT.0 ) THEN
164 info = -1
165 ELSE IF( n.LT.0 ) THEN
166 info = -2
167 ELSE IF( mb.LT.1 .OR. (mb.GT.min(m,n) .AND. min(m,n).GT.0 ))THEN
168 info = -3
169 ELSE IF( lda.LT.max( 1, m ) ) THEN
170 info = -5
171 ELSE IF( ldt.LT.mb ) THEN
172 info = -7
173 END IF
174 IF( info.NE.0 ) THEN
175 CALL xerbla( 'ZGELQT', -info )
176 RETURN
177 END IF
178*
179* Quick return if possible
180*
181 k = min( m, n )
182 IF( k.EQ.0 ) RETURN
183*
184* Blocked loop of length K
185*
186 DO i = 1, k, mb
187 ib = min( k-i+1, mb )
188*
189* Compute the LQ factorization of the current block A(I:M,I:I+IB-1)
190*
191 CALL zgelqt3( ib, n-i+1, a(i,i), lda, t(1,i), ldt, iinfo )
192 IF( i+ib.LE.m ) THEN
193*
194* Update by applying H**T to A(I:M,I+IB:N) from the right
195*
196 CALL zlarfb( 'R', 'N', 'F', 'R', m-i-ib+1, n-i+1, ib,
197 $ a( i, i ), lda, t( 1, i ), ldt,
198 $ a( i+ib, i ), lda, work , m-i-ib+1 )
199 END IF
200 END DO
201 RETURN
202*
203* End of ZGELQT
204*
205 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
recursive subroutine zgelqt3(m, n, a, lda, t, ldt, info)
ZGELQT3 recursively computes a LQ factorization of a general real or complex matrix using the compact...
Definition zgelqt3.f:129
subroutine zgelqt(m, n, mb, a, lda, t, ldt, work, info)
ZGELQT
Definition zgelqt.f:137
subroutine zlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix.
Definition zlarfb.f:195