LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dgeqrt.f
Go to the documentation of this file.
1*> \brief \b DGEQRT
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DGEQRT + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dgeqrt.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dgeqrt.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dgeqrt.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* SUBROUTINE DGEQRT( M, N, NB, A, LDA, T, LDT, WORK, INFO )
20*
21* .. Scalar Arguments ..
22* INTEGER INFO, LDA, LDT, M, N, NB
23* ..
24* .. Array Arguments ..
25* DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
26* ..
27*
28*
29*> \par Purpose:
30* =============
31*>
32*> \verbatim
33*>
34*> DGEQRT computes a blocked QR factorization of a real M-by-N matrix A
35*> using the compact WY representation of Q.
36*> \endverbatim
37*
38* Arguments:
39* ==========
40*
41*> \param[in] M
42*> \verbatim
43*> M is INTEGER
44*> The number of rows of the matrix A. M >= 0.
45*> \endverbatim
46*>
47*> \param[in] N
48*> \verbatim
49*> N is INTEGER
50*> The number of columns of the matrix A. N >= 0.
51*> \endverbatim
52*>
53*> \param[in] NB
54*> \verbatim
55*> NB is INTEGER
56*> The block size to be used in the blocked QR. MIN(M,N) >= NB >= 1.
57*> \endverbatim
58*>
59*> \param[in,out] A
60*> \verbatim
61*> A is DOUBLE PRECISION array, dimension (LDA,N)
62*> On entry, the M-by-N matrix A.
63*> On exit, the elements on and above the diagonal of the array
64*> contain the min(M,N)-by-N upper trapezoidal matrix R (R is
65*> upper triangular if M >= N); the elements below the diagonal
66*> are the columns of V.
67*> \endverbatim
68*>
69*> \param[in] LDA
70*> \verbatim
71*> LDA is INTEGER
72*> The leading dimension of the array A. LDA >= max(1,M).
73*> \endverbatim
74*>
75*> \param[out] T
76*> \verbatim
77*> T is DOUBLE PRECISION array, dimension (LDT,MIN(M,N))
78*> The upper triangular block reflectors stored in compact form
79*> as a sequence of upper triangular blocks. See below
80*> for further details.
81*> \endverbatim
82*>
83*> \param[in] LDT
84*> \verbatim
85*> LDT is INTEGER
86*> The leading dimension of the array T. LDT >= NB.
87*> \endverbatim
88*>
89*> \param[out] WORK
90*> \verbatim
91*> WORK is DOUBLE PRECISION array, dimension (NB*N)
92*> \endverbatim
93*>
94*> \param[out] INFO
95*> \verbatim
96*> INFO is INTEGER
97*> = 0: successful exit
98*> < 0: if INFO = -i, the i-th argument had an illegal value
99*> \endverbatim
100*
101* Authors:
102* ========
103*
104*> \author Univ. of Tennessee
105*> \author Univ. of California Berkeley
106*> \author Univ. of Colorado Denver
107*> \author NAG Ltd.
108*
109*> \ingroup geqrt
110*
111*> \par Further Details:
112* =====================
113*>
114*> \verbatim
115*>
116*> The matrix V stores the elementary reflectors H(i) in the i-th column
117*> below the diagonal. For example, if M=5 and N=3, the matrix V is
118*>
119*> V = ( 1 )
120*> ( v1 1 )
121*> ( v1 v2 1 )
122*> ( v1 v2 v3 )
123*> ( v1 v2 v3 )
124*>
125*> where the vi's represent the vectors which define H(i), which are returned
126*> in the matrix A. The 1's along the diagonal of V are not stored in A.
127*>
128*> Let K=MIN(M,N). The number of blocks is B = ceiling(K/NB), where each
129*> block is of order NB except for the last block, which is of order
130*> IB = K - (B-1)*NB. For each of the B blocks, a upper triangular block
131*> reflector factor is computed: T1, T2, ..., TB. The NB-by-NB (and IB-by-IB
132*> for the last block) T's are stored in the NB-by-K matrix T as
133*>
134*> T = (T1 T2 ... TB).
135*> \endverbatim
136*>
137* =====================================================================
138 SUBROUTINE dgeqrt( M, N, NB, A, LDA, T, LDT, WORK, INFO )
139*
140* -- LAPACK computational routine --
141* -- LAPACK is a software package provided by Univ. of Tennessee, --
142* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
143*
144* .. Scalar Arguments ..
145 INTEGER INFO, LDA, LDT, M, N, NB
146* ..
147* .. Array Arguments ..
148 DOUBLE PRECISION A( LDA, * ), T( LDT, * ), WORK( * )
149* ..
150*
151* =====================================================================
152*
153* ..
154* .. Local Scalars ..
155 INTEGER I, IB, IINFO, K
156 LOGICAL USE_RECURSIVE_QR
157 parameter( use_recursive_qr=.true. )
158* ..
159* .. External Subroutines ..
160 EXTERNAL dgeqrt2, dgeqrt3, dlarfb, xerbla
161* ..
162* .. Executable Statements ..
163*
164* Test the input arguments
165*
166 info = 0
167 IF( m.LT.0 ) THEN
168 info = -1
169 ELSE IF( n.LT.0 ) THEN
170 info = -2
171 ELSE IF( nb.LT.1 .OR. ( nb.GT.min(m,n) .AND. min(m,n).GT.0 ) )THEN
172 info = -3
173 ELSE IF( lda.LT.max( 1, m ) ) THEN
174 info = -5
175 ELSE IF( ldt.LT.nb ) THEN
176 info = -7
177 END IF
178 IF( info.NE.0 ) THEN
179 CALL xerbla( 'DGEQRT', -info )
180 RETURN
181 END IF
182*
183* Quick return if possible
184*
185 k = min( m, n )
186 IF( k.EQ.0 ) RETURN
187*
188* Blocked loop of length K
189*
190 DO i = 1, k, nb
191 ib = min( k-i+1, nb )
192*
193* Compute the QR factorization of the current block A(I:M,I:I+IB-1)
194*
195 IF( use_recursive_qr ) THEN
196 CALL dgeqrt3( m-i+1, ib, a(i,i), lda, t(1,i), ldt,
197 $ iinfo )
198 ELSE
199 CALL dgeqrt2( m-i+1, ib, a(i,i), lda, t(1,i), ldt,
200 $ iinfo )
201 END IF
202 IF( i+ib.LE.n ) THEN
203*
204* Update by applying H**T to A(I:M,I+IB:N) from the left
205*
206 CALL dlarfb( 'L', 'T', 'F', 'C', m-i+1, n-i-ib+1, ib,
207 $ a( i, i ), lda, t( 1, i ), ldt,
208 $ a( i, i+ib ), lda, work , n-i-ib+1 )
209 END IF
210 END DO
211 RETURN
212*
213* End of DGEQRT
214*
215 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgeqrt2(m, n, a, lda, t, ldt, info)
DGEQRT2 computes a QR factorization of a general real or complex matrix using the compact WY represen...
Definition dgeqrt2.f:125
recursive subroutine dgeqrt3(m, n, a, lda, t, ldt, info)
DGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact...
Definition dgeqrt3.f:130
subroutine dgeqrt(m, n, nb, a, lda, t, ldt, work, info)
DGEQRT
Definition dgeqrt.f:139
subroutine dlarfb(side, trans, direct, storev, m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
DLARFB applies a block reflector or its transpose to a general rectangular matrix.
Definition dlarfb.f:195