LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
recursive subroutine dgeqrt3 | ( | integer | m, |
integer | n, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldt, * ) | t, | ||
integer | ldt, | ||
integer | info ) |
DGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact WY representation of Q.
Download DGEQRT3 + dependencies [TGZ] [ZIP] [TXT]
!> !> DGEQRT3 recursively computes a QR factorization of a real M-by-N !> matrix A, using the compact WY representation of Q. !> !> Based on the algorithm of Elmroth and Gustavson, !> IBM J. Res. Develop. Vol 44 No. 4 July 2000. !>
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= N. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix A. N >= 0. !> |
[in,out] | A | !> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the real M-by-N matrix A. On exit, the elements on and !> above the diagonal contain the N-by-N upper triangular matrix R; the !> elements below the diagonal are the columns of V. See below for !> further details. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[out] | T | !> T is DOUBLE PRECISION array, dimension (LDT,N) !> The N-by-N upper triangular factor of the block reflector. !> The elements on and above the diagonal contain the block !> reflector T; the elements below the diagonal are not used. !> See below for further details. !> |
[in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= max(1,N). !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> !> The matrix V stores the elementary reflectors H(i) in the i-th column !> below the diagonal. For example, if M=5 and N=3, the matrix V is !> !> V = ( 1 ) !> ( v1 1 ) !> ( v1 v2 1 ) !> ( v1 v2 v3 ) !> ( v1 v2 v3 ) !> !> where the vi's represent the vectors which define H(i), which are returned !> in the matrix A. The 1's along the diagonal of V are not stored in A. The !> block reflector H is then given by !> !> H = I - V * T * V**T !> !> where V**T is the transpose of V. !> !> For details of the algorithm, see Elmroth and Gustavson (cited above). !>
Definition at line 129 of file dgeqrt3.f.