LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ ssysvxx()

subroutine ssysvxx ( character fact,
character uplo,
integer n,
integer nrhs,
real, dimension( lda, * ) a,
integer lda,
real, dimension( ldaf, * ) af,
integer ldaf,
integer, dimension( * ) ipiv,
character equed,
real, dimension( * ) s,
real, dimension( ldb, * ) b,
integer ldb,
real, dimension( ldx, * ) x,
integer ldx,
real rcond,
real rpvgrw,
real, dimension( * ) berr,
integer n_err_bnds,
real, dimension( nrhs, * ) err_bnds_norm,
real, dimension( nrhs, * ) err_bnds_comp,
integer nparams,
real, dimension( * ) params,
real, dimension( * ) work,
integer, dimension( * ) iwork,
integer info )

SSYSVXX

Download SSYSVXX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    SSYSVXX uses the diagonal pivoting factorization to compute the
!>    solution to a real system of linear equations A * X = B, where A
!>    is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices.
!>
!>    If requested, both normwise and maximum componentwise error bounds
!>    are returned. SSYSVXX will return a solution with a tiny
!>    guaranteed error (O(eps) where eps is the working machine
!>    precision) unless the matrix is very ill-conditioned, in which
!>    case a warning is returned. Relevant condition numbers also are
!>    calculated and returned.
!>
!>    SSYSVXX accepts user-provided factorizations and equilibration
!>    factors; see the definitions of the FACT and EQUED options.
!>    Solving with refinement and using a factorization from a previous
!>    SSYSVXX call will also produce a solution with either O(eps)
!>    errors or warnings, but we cannot make that claim for general
!>    user-provided factorizations and equilibration factors if they
!>    differ from what SSYSVXX would itself produce.
!> 
Description:
!>
!>    The following steps are performed:
!>
!>    1. If FACT = 'E', real scaling factors are computed to equilibrate
!>    the system:
!>
!>      diag(S)*A*diag(S)     *inv(diag(S))*X = diag(S)*B
!>
!>    Whether or not the system will be equilibrated depends on the
!>    scaling of the matrix A, but if equilibration is used, A is
!>    overwritten by diag(S)*A*diag(S) and B by diag(S)*B.
!>
!>    2. If FACT = 'N' or 'E', the LU decomposition is used to factor
!>    the matrix A (after equilibration if FACT = 'E') as
!>
!>       A = U * D * U**T,  if UPLO = 'U', or
!>       A = L * D * L**T,  if UPLO = 'L',
!>
!>    where U (or L) is a product of permutation and unit upper (lower)
!>    triangular matrices, and D is symmetric and block diagonal with
!>    1-by-1 and 2-by-2 diagonal blocks.
!>
!>    3. If some D(i,i)=0, so that D is exactly singular, then the
!>    routine returns with INFO = i. Otherwise, the factored form of A
!>    is used to estimate the condition number of the matrix A (see
!>    argument RCOND).  If the reciprocal of the condition number is
!>    less than machine precision, the routine still goes on to solve
!>    for X and compute error bounds as described below.
!>
!>    4. The system of equations is solved for X using the factored form
!>    of A.
!>
!>    5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero),
!>    the routine will use iterative refinement to try to get a small
!>    error and error bounds.  Refinement calculates the residual to at
!>    least twice the working precision.
!>
!>    6. If equilibration was used, the matrix X is premultiplied by
!>    diag(R) so that it solves the original system before
!>    equilibration.
!> 
!>     Some optional parameters are bundled in the PARAMS array.  These
!>     settings determine how refinement is performed, but often the
!>     defaults are acceptable.  If the defaults are acceptable, users
!>     can pass NPARAMS = 0 which prevents the source code from accessing
!>     the PARAMS argument.
!> 
Parameters
[in]FACT
!>          FACT is CHARACTER*1
!>     Specifies whether or not the factored form of the matrix A is
!>     supplied on entry, and if not, whether the matrix A should be
!>     equilibrated before it is factored.
!>       = 'F':  On entry, AF and IPIV contain the factored form of A.
!>               If EQUED is not 'N', the matrix A has been
!>               equilibrated with scaling factors given by S.
!>               A, AF, and IPIV are not modified.
!>       = 'N':  The matrix A will be copied to AF and factored.
!>       = 'E':  The matrix A will be equilibrated if necessary, then
!>               copied to AF and factored.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>       = 'U':  Upper triangle of A is stored;
!>       = 'L':  Lower triangle of A is stored.
!> 
[in]N
!>          N is INTEGER
!>     The number of linear equations, i.e., the order of the
!>     matrix A.  N >= 0.
!> 
[in]NRHS
!>          NRHS is INTEGER
!>     The number of right hand sides, i.e., the number of columns
!>     of the matrices B and X.  NRHS >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>     The symmetric matrix A.  If UPLO = 'U', the leading N-by-N
!>     upper triangular part of A contains the upper triangular
!>     part of the matrix A, and the strictly lower triangular
!>     part of A is not referenced.  If UPLO = 'L', the leading
!>     N-by-N lower triangular part of A contains the lower
!>     triangular part of the matrix A, and the strictly upper
!>     triangular part of A is not referenced.
!>
!>     On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by
!>     diag(S)*A*diag(S).
!> 
[in]LDA
!>          LDA is INTEGER
!>     The leading dimension of the array A.  LDA >= max(1,N).
!> 
[in,out]AF
!>          AF is REAL array, dimension (LDAF,N)
!>     If FACT = 'F', then AF is an input argument and on entry
!>     contains the block diagonal matrix D and the multipliers
!>     used to obtain the factor U or L from the factorization A =
!>     U*D*U**T or A = L*D*L**T as computed by SSYTRF.
!>
!>     If FACT = 'N', then AF is an output argument and on exit
!>     returns the block diagonal matrix D and the multipliers
!>     used to obtain the factor U or L from the factorization A =
!>     U*D*U**T or A = L*D*L**T.
!> 
[in]LDAF
!>          LDAF is INTEGER
!>     The leading dimension of the array AF.  LDAF >= max(1,N).
!> 
[in,out]IPIV
!>          IPIV is INTEGER array, dimension (N)
!>     If FACT = 'F', then IPIV is an input argument and on entry
!>     contains details of the interchanges and the block
!>     structure of D, as determined by SSYTRF.  If IPIV(k) > 0,
!>     then rows and columns k and IPIV(k) were interchanged and
!>     D(k,k) is a 1-by-1 diagonal block.  If UPLO = 'U' and
!>     IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and
!>     -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2
!>     diagonal block.  If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0,
!>     then rows and columns k+1 and -IPIV(k) were interchanged
!>     and D(k:k+1,k:k+1) is a 2-by-2 diagonal block.
!>
!>     If FACT = 'N', then IPIV is an output argument and on exit
!>     contains details of the interchanges and the block
!>     structure of D, as determined by SSYTRF.
!> 
[in,out]EQUED
!>          EQUED is CHARACTER*1
!>     Specifies the form of equilibration that was done.
!>       = 'N':  No equilibration (always true if FACT = 'N').
!>       = 'Y':  Both row and column equilibration, i.e., A has been
!>               replaced by diag(S) * A * diag(S).
!>     EQUED is an input argument if FACT = 'F'; otherwise, it is an
!>     output argument.
!> 
[in,out]S
!>          S is REAL array, dimension (N)
!>     The scale factors for A.  If EQUED = 'Y', A is multiplied on
!>     the left and right by diag(S).  S is an input argument if FACT =
!>     'F'; otherwise, S is an output argument.  If FACT = 'F' and EQUED
!>     = 'Y', each element of S must be positive.  If S is output, each
!>     element of S is a power of the radix. If S is input, each element
!>     of S should be a power of the radix to ensure a reliable solution
!>     and error estimates. Scaling by powers of the radix does not cause
!>     rounding errors unless the result underflows or overflows.
!>     Rounding errors during scaling lead to refining with a matrix that
!>     is not equivalent to the input matrix, producing error estimates
!>     that may not be reliable.
!> 
[in,out]B
!>          B is REAL array, dimension (LDB,NRHS)
!>     On entry, the N-by-NRHS right hand side matrix B.
!>     On exit,
!>     if EQUED = 'N', B is not modified;
!>     if EQUED = 'Y', B is overwritten by diag(S)*B;
!> 
[in]LDB
!>          LDB is INTEGER
!>     The leading dimension of the array B.  LDB >= max(1,N).
!> 
[out]X
!>          X is REAL array, dimension (LDX,NRHS)
!>     If INFO = 0, the N-by-NRHS solution matrix X to the original
!>     system of equations.  Note that A and B are modified on exit if
!>     EQUED .ne. 'N', and the solution to the equilibrated system is
!>     inv(diag(S))*X.
!> 
[in]LDX
!>          LDX is INTEGER
!>     The leading dimension of the array X.  LDX >= max(1,N).
!> 
[out]RCOND
!>          RCOND is REAL
!>     Reciprocal scaled condition number.  This is an estimate of the
!>     reciprocal Skeel condition number of the matrix A after
!>     equilibration (if done).  If this is less than the machine
!>     precision (in particular, if it is zero), the matrix is singular
!>     to working precision.  Note that the error may still be small even
!>     if this number is very small and the matrix appears ill-
!>     conditioned.
!> 
[out]RPVGRW
!>          RPVGRW is REAL
!>     Reciprocal pivot growth.  On exit, this contains the reciprocal
!>     pivot growth factor norm(A)/norm(U). The 
!>     norm is used.  If this is much less than 1, then the stability of
!>     the LU factorization of the (equilibrated) matrix A could be poor.
!>     This also means that the solution X, estimated condition numbers,
!>     and error bounds could be unreliable. If factorization fails with
!>     0<INFO<=N, then this contains the reciprocal pivot growth factor
!>     for the leading INFO columns of A.
!> 
[out]BERR
!>          BERR is REAL array, dimension (NRHS)
!>     Componentwise relative backward error.  This is the
!>     componentwise relative backward error of each solution vector X(j)
!>     (i.e., the smallest relative change in any element of A or B that
!>     makes X(j) an exact solution).
!> 
[in]N_ERR_BNDS
!>          N_ERR_BNDS is INTEGER
!>     Number of error bounds to return for each right hand side
!>     and each type (normwise or componentwise).  See ERR_BNDS_NORM and
!>     ERR_BNDS_COMP below.
!> 
[out]ERR_BNDS_NORM
!>          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     normwise relative error, which is defined as follows:
!>
!>     Normwise relative error in the ith solution vector:
!>             max_j (abs(XTRUE(j,i) - X(j,i)))
!>            ------------------------------
!>                  max_j abs(X(j,i))
!>
!>     The array is indexed by the type of error information as described
!>     below. There currently are up to three pieces of information
!>     returned.
!>
!>     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_NORM(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated normwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*A, where S scales each row by a power of the
!>              radix so all absolute row sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[out]ERR_BNDS_COMP
!>          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS)
!>     For each right-hand side, this array contains information about
!>     various error bounds and condition numbers corresponding to the
!>     componentwise relative error, which is defined as follows:
!>
!>     Componentwise relative error in the ith solution vector:
!>                    abs(XTRUE(j,i) - X(j,i))
!>             max_j ----------------------
!>                         abs(X(j,i))
!>
!>     The array is indexed by the right-hand side i (on which the
!>     componentwise relative error depends), and the type of error
!>     information as described below. There currently are up to three
!>     pieces of information returned for each right-hand side. If
!>     componentwise accuracy is not requested (PARAMS(3) = 0.0), then
!>     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most
!>     the first (:,N_ERR_BNDS) entries are returned.
!>
!>     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith
!>     right-hand side.
!>
!>     The second index in ERR_BNDS_COMP(:,err) contains the following
!>     three fields:
!>     err = 1  boolean. Trust the answer if the
!>              reciprocal condition number is less than the threshold
!>              sqrt(n) * slamch('Epsilon').
!>
!>     err = 2  error bound: The estimated forward error,
!>              almost certainly within a factor of 10 of the true error
!>              so long as the next entry is greater than the threshold
!>              sqrt(n) * slamch('Epsilon'). This error bound should only
!>              be trusted if the previous boolean is true.
!>
!>     err = 3  Reciprocal condition number: Estimated componentwise
!>              reciprocal condition number.  Compared with the threshold
!>              sqrt(n) * slamch('Epsilon') to determine if the error
!>              estimate is . These reciprocal condition
!>              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some
!>              appropriately scaled matrix Z.
!>              Let Z = S*(A*diag(x)), where x is the solution for the
!>              current right-hand side and S scales each row of
!>              A*diag(x) by a power of the radix so all absolute row
!>              sums of Z are approximately 1.
!>
!>     See Lapack Working Note 165 for further details and extra
!>     cautions.
!> 
[in]NPARAMS
!>          NPARAMS is INTEGER
!>     Specifies the number of parameters set in PARAMS.  If <= 0, the
!>     PARAMS array is never referenced and default values are used.
!> 
[in,out]PARAMS
!>          PARAMS is REAL array, dimension NPARAMS
!>     Specifies algorithm parameters.  If an entry is < 0.0, then
!>     that entry will be filled with default value used for that
!>     parameter.  Only positions up to NPARAMS are accessed; defaults
!>     are used for higher-numbered parameters.
!>
!>       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative
!>            refinement or not.
!>         Default: 1.0
!>            = 0.0:  No refinement is performed, and no error bounds are
!>                    computed.
!>            = 1.0:  Use the double-precision refinement algorithm,
!>                    possibly with doubled-single computations if the
!>                    compilation environment does not support DOUBLE
!>                    PRECISION.
!>              (other values are reserved for future use)
!>
!>       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual
!>            computations allowed for refinement.
!>         Default: 10
!>         Aggressive: Set to 100 to permit convergence using approximate
!>                     factorizations or factorizations other than LU. If
!>                     the factorization uses a technique other than
!>                     Gaussian elimination, the guarantees in
!>                     err_bnds_norm and err_bnds_comp may no longer be
!>                     trustworthy.
!>
!>       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code
!>            will attempt to find a solution with small componentwise
!>            relative error in the double-precision algorithm.  Positive
!>            is true, 0.0 is false.
!>         Default: 1.0 (attempt componentwise convergence)
!> 
[out]WORK
!>          WORK is REAL array, dimension (4*N)
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!> 
[out]INFO
!>          INFO is INTEGER
!>       = 0:  Successful exit. The solution to every right-hand side is
!>         guaranteed.
!>       < 0:  If INFO = -i, the i-th argument had an illegal value
!>       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization
!>         has been completed, but the factor U is exactly singular, so
!>         the solution and error bounds could not be computed. RCOND = 0
!>         is returned.
!>       = N+J: The solution corresponding to the Jth right-hand side is
!>         not guaranteed. The solutions corresponding to other right-
!>         hand sides K with K > J may not be guaranteed as well, but
!>         only the first such right-hand side is reported. If a small
!>         componentwise error is not requested (PARAMS(3) = 0.0) then
!>         the Jth right-hand side is the first with a normwise error
!>         bound that is not guaranteed (the smallest J such
!>         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0)
!>         the Jth right-hand side is the first with either a normwise or
!>         componentwise error bound that is not guaranteed (the smallest
!>         J such that either ERR_BNDS_NORM(J,1) = 0.0 or
!>         ERR_BNDS_COMP(J,1) = 0.0). See the definition of
!>         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information
!>         about all of the right-hand sides check ERR_BNDS_NORM or
!>         ERR_BNDS_COMP.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 502 of file ssysvxx.f.

507*
508* -- LAPACK driver routine --
509* -- LAPACK is a software package provided by Univ. of Tennessee, --
510* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
511*
512* .. Scalar Arguments ..
513 CHARACTER EQUED, FACT, UPLO
514 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
515 $ N_ERR_BNDS
516 REAL RCOND, RPVGRW
517* ..
518* .. Array Arguments ..
519 INTEGER IPIV( * ), IWORK( * )
520 REAL A( LDA, * ), AF( LDAF, * ), B( LDB, * ),
521 $ X( LDX, * ), WORK( * )
522 REAL S( * ), PARAMS( * ), BERR( * ),
523 $ ERR_BNDS_NORM( NRHS, * ),
524 $ ERR_BNDS_COMP( NRHS, * )
525* ..
526*
527* ==================================================================
528*
529* .. Parameters ..
530 REAL ZERO, ONE
531 parameter( zero = 0.0e+0, one = 1.0e+0 )
532 INTEGER FINAL_NRM_ERR_I, FINAL_CMP_ERR_I, BERR_I
533 INTEGER RCOND_I, NRM_RCOND_I, NRM_ERR_I, CMP_RCOND_I
534 INTEGER CMP_ERR_I, PIV_GROWTH_I
535 parameter( final_nrm_err_i = 1, final_cmp_err_i = 2,
536 $ berr_i = 3 )
537 parameter( rcond_i = 4, nrm_rcond_i = 5, nrm_err_i = 6 )
538 parameter( cmp_rcond_i = 7, cmp_err_i = 8,
539 $ piv_growth_i = 9 )
540* ..
541* .. Local Scalars ..
542 LOGICAL EQUIL, NOFACT, RCEQU
543 INTEGER INFEQU, J
544 REAL AMAX, BIGNUM, SMIN, SMAX, SCOND, SMLNUM
545* ..
546* .. External Functions ..
547 EXTERNAL lsame, slamch, sla_syrpvgrw
548 LOGICAL LSAME
549 REAL SLAMCH, SLA_SYRPVGRW
550* ..
551* .. External Subroutines ..
552 EXTERNAL ssyequb, ssytrf, ssytrs,
554* ..
555* .. Intrinsic Functions ..
556 INTRINSIC max, min
557* ..
558* .. Executable Statements ..
559*
560 info = 0
561 nofact = lsame( fact, 'N' )
562 equil = lsame( fact, 'E' )
563 smlnum = slamch( 'Safe minimum' )
564 bignum = one / smlnum
565 IF( nofact .OR. equil ) THEN
566 equed = 'N'
567 rcequ = .false.
568 ELSE
569 rcequ = lsame( equed, 'Y' )
570 ENDIF
571*
572* Default is failure. If an input parameter is wrong or
573* factorization fails, make everything look horrible. Only the
574* pivot growth is set here, the rest is initialized in SSYRFSX.
575*
576 rpvgrw = zero
577*
578* Test the input parameters. PARAMS is not tested until SSYRFSX.
579*
580 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.
581 $ lsame( fact, 'F' ) ) THEN
582 info = -1
583 ELSE IF( .NOT.lsame(uplo, 'U') .AND.
584 $ .NOT.lsame(uplo, 'L') ) THEN
585 info = -2
586 ELSE IF( n.LT.0 ) THEN
587 info = -3
588 ELSE IF( nrhs.LT.0 ) THEN
589 info = -4
590 ELSE IF( lda.LT.max( 1, n ) ) THEN
591 info = -6
592 ELSE IF( ldaf.LT.max( 1, n ) ) THEN
593 info = -8
594 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
595 $ ( rcequ .OR. lsame( equed, 'N' ) ) ) THEN
596 info = -10
597 ELSE
598 IF ( rcequ ) THEN
599 smin = bignum
600 smax = zero
601 DO 10 j = 1, n
602 smin = min( smin, s( j ) )
603 smax = max( smax, s( j ) )
604 10 CONTINUE
605 IF( smin.LE.zero ) THEN
606 info = -11
607 ELSE IF( n.GT.0 ) THEN
608 scond = max( smin, smlnum ) / min( smax, bignum )
609 ELSE
610 scond = one
611 END IF
612 END IF
613 IF( info.EQ.0 ) THEN
614 IF( ldb.LT.max( 1, n ) ) THEN
615 info = -13
616 ELSE IF( ldx.LT.max( 1, n ) ) THEN
617 info = -15
618 END IF
619 END IF
620 END IF
621*
622 IF( info.NE.0 ) THEN
623 CALL xerbla( 'SSYSVXX', -info )
624 RETURN
625 END IF
626*
627 IF( equil ) THEN
628*
629* Compute row and column scalings to equilibrate the matrix A.
630*
631 CALL ssyequb( uplo, n, a, lda, s, scond, amax, work,
632 $ infequ )
633 IF( infequ.EQ.0 ) THEN
634*
635* Equilibrate the matrix.
636*
637 CALL slaqsy( uplo, n, a, lda, s, scond, amax, equed )
638 rcequ = lsame( equed, 'Y' )
639 END IF
640 END IF
641*
642* Scale the right-hand side.
643*
644 IF( rcequ ) CALL slascl2( n, nrhs, s, b, ldb )
645*
646 IF( nofact .OR. equil ) THEN
647*
648* Compute the LDL^T or UDU^T factorization of A.
649*
650 CALL slacpy( uplo, n, n, a, lda, af, ldaf )
651 CALL ssytrf( uplo, n, af, ldaf, ipiv, work, 5*max(1,n),
652 $ info )
653*
654* Return if INFO is non-zero.
655*
656 IF( info.GT.0 ) THEN
657*
658* Pivot in column INFO is exactly 0
659* Compute the reciprocal pivot growth factor of the
660* leading rank-deficient INFO columns of A.
661*
662 IF ( n.GT.0 )
663 $ rpvgrw = sla_syrpvgrw(uplo, n, info, a, lda, af,
664 $ ldaf, ipiv, work )
665 RETURN
666 END IF
667 END IF
668*
669* Compute the reciprocal pivot growth factor RPVGRW.
670*
671 IF ( n.GT.0 )
672 $ rpvgrw = sla_syrpvgrw( uplo, n, info, a, lda, af, ldaf,
673 $ ipiv, work )
674*
675* Compute the solution matrix X.
676*
677 CALL slacpy( 'Full', n, nrhs, b, ldb, x, ldx )
678 CALL ssytrs( uplo, n, nrhs, af, ldaf, ipiv, x, ldx, info )
679*
680* Use iterative refinement to improve the computed solution and
681* compute error bounds and backward error estimates for it.
682*
683 CALL ssyrfsx( uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv,
684 $ s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm,
685 $ err_bnds_comp, nparams, params, work, iwork, info )
686*
687* Scale solutions.
688*
689 IF ( rcequ ) THEN
690 CALL slascl2 ( n, nrhs, s, x, ldx )
691 END IF
692*
693 RETURN
694*
695* End of SSYSVXX
696*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine ssyequb(uplo, n, a, lda, s, scond, amax, work, info)
SSYEQUB
Definition ssyequb.f:130
subroutine ssyrfsx(uplo, equed, n, nrhs, a, lda, af, ldaf, ipiv, s, b, ldb, x, ldx, rcond, berr, n_err_bnds, err_bnds_norm, err_bnds_comp, nparams, params, work, iwork, info)
SSYRFSX
Definition ssyrfsx.f:401
subroutine ssytrf(uplo, n, a, lda, ipiv, work, lwork, info)
SSYTRF
Definition ssytrf.f:180
subroutine ssytrs(uplo, n, nrhs, a, lda, ipiv, b, ldb, info)
SSYTRS
Definition ssytrs.f:118
real function sla_syrpvgrw(uplo, n, info, a, lda, af, ldaf, ipiv, work)
SLA_SYRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a symmetric indefinite m...
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
subroutine slaqsy(uplo, n, a, lda, s, scond, amax, equed)
SLAQSY scales a symmetric/Hermitian matrix, using scaling factors computed by spoequ.
Definition slaqsy.f:131
subroutine slascl2(m, n, d, x, ldx)
SLASCL2 performs diagonal scaling on a matrix.
Definition slascl2.f:88
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: