LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
zlaqr3.f
Go to the documentation of this file.
1*> \brief \b ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation).
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLAQR3 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlaqr3.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlaqr3.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlaqr3.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18* Definition:
19* ===========
20*
21* SUBROUTINE ZLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
22* IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
23* NV, WV, LDWV, WORK, LWORK )
24*
25* .. Scalar Arguments ..
26* INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
27* $ LDZ, LWORK, N, ND, NH, NS, NV, NW
28* LOGICAL WANTT, WANTZ
29* ..
30* .. Array Arguments ..
31* COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
32* $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
33* ..
34*
35*
36*> \par Purpose:
37* =============
38*>
39*> \verbatim
40*>
41*> Aggressive early deflation:
42*>
43*> ZLAQR3 accepts as input an upper Hessenberg matrix
44*> H and performs an unitary similarity transformation
45*> designed to detect and deflate fully converged eigenvalues from
46*> a trailing principal submatrix. On output H has been over-
47*> written by a new Hessenberg matrix that is a perturbation of
48*> an unitary similarity transformation of H. It is to be
49*> hoped that the final version of H has many zero subdiagonal
50*> entries.
51*>
52*> \endverbatim
53*
54* Arguments:
55* ==========
56*
57*> \param[in] WANTT
58*> \verbatim
59*> WANTT is LOGICAL
60*> If .TRUE., then the Hessenberg matrix H is fully updated
61*> so that the triangular Schur factor may be
62*> computed (in cooperation with the calling subroutine).
63*> If .FALSE., then only enough of H is updated to preserve
64*> the eigenvalues.
65*> \endverbatim
66*>
67*> \param[in] WANTZ
68*> \verbatim
69*> WANTZ is LOGICAL
70*> If .TRUE., then the unitary matrix Z is updated so
71*> so that the unitary Schur factor may be computed
72*> (in cooperation with the calling subroutine).
73*> If .FALSE., then Z is not referenced.
74*> \endverbatim
75*>
76*> \param[in] N
77*> \verbatim
78*> N is INTEGER
79*> The order of the matrix H and (if WANTZ is .TRUE.) the
80*> order of the unitary matrix Z.
81*> \endverbatim
82*>
83*> \param[in] KTOP
84*> \verbatim
85*> KTOP is INTEGER
86*> It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0.
87*> KBOT and KTOP together determine an isolated block
88*> along the diagonal of the Hessenberg matrix.
89*> \endverbatim
90*>
91*> \param[in] KBOT
92*> \verbatim
93*> KBOT is INTEGER
94*> It is assumed without a check that either
95*> KBOT = N or H(KBOT+1,KBOT)=0. KBOT and KTOP together
96*> determine an isolated block along the diagonal of the
97*> Hessenberg matrix.
98*> \endverbatim
99*>
100*> \param[in] NW
101*> \verbatim
102*> NW is INTEGER
103*> Deflation window size. 1 <= NW <= (KBOT-KTOP+1).
104*> \endverbatim
105*>
106*> \param[in,out] H
107*> \verbatim
108*> H is COMPLEX*16 array, dimension (LDH,N)
109*> On input the initial N-by-N section of H stores the
110*> Hessenberg matrix undergoing aggressive early deflation.
111*> On output H has been transformed by a unitary
112*> similarity transformation, perturbed, and the returned
113*> to Hessenberg form that (it is to be hoped) has some
114*> zero subdiagonal entries.
115*> \endverbatim
116*>
117*> \param[in] LDH
118*> \verbatim
119*> LDH is INTEGER
120*> Leading dimension of H just as declared in the calling
121*> subroutine. N <= LDH
122*> \endverbatim
123*>
124*> \param[in] ILOZ
125*> \verbatim
126*> ILOZ is INTEGER
127*> \endverbatim
128*>
129*> \param[in] IHIZ
130*> \verbatim
131*> IHIZ is INTEGER
132*> Specify the rows of Z to which transformations must be
133*> applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N.
134*> \endverbatim
135*>
136*> \param[in,out] Z
137*> \verbatim
138*> Z is COMPLEX*16 array, dimension (LDZ,N)
139*> IF WANTZ is .TRUE., then on output, the unitary
140*> similarity transformation mentioned above has been
141*> accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right.
142*> If WANTZ is .FALSE., then Z is unreferenced.
143*> \endverbatim
144*>
145*> \param[in] LDZ
146*> \verbatim
147*> LDZ is INTEGER
148*> The leading dimension of Z just as declared in the
149*> calling subroutine. 1 <= LDZ.
150*> \endverbatim
151*>
152*> \param[out] NS
153*> \verbatim
154*> NS is INTEGER
155*> The number of unconverged (ie approximate) eigenvalues
156*> returned in SR and SI that may be used as shifts by the
157*> calling subroutine.
158*> \endverbatim
159*>
160*> \param[out] ND
161*> \verbatim
162*> ND is INTEGER
163*> The number of converged eigenvalues uncovered by this
164*> subroutine.
165*> \endverbatim
166*>
167*> \param[out] SH
168*> \verbatim
169*> SH is COMPLEX*16 array, dimension (KBOT)
170*> On output, approximate eigenvalues that may
171*> be used for shifts are stored in SH(KBOT-ND-NS+1)
172*> through SR(KBOT-ND). Converged eigenvalues are
173*> stored in SH(KBOT-ND+1) through SH(KBOT).
174*> \endverbatim
175*>
176*> \param[out] V
177*> \verbatim
178*> V is COMPLEX*16 array, dimension (LDV,NW)
179*> An NW-by-NW work array.
180*> \endverbatim
181*>
182*> \param[in] LDV
183*> \verbatim
184*> LDV is INTEGER
185*> The leading dimension of V just as declared in the
186*> calling subroutine. NW <= LDV
187*> \endverbatim
188*>
189*> \param[in] NH
190*> \verbatim
191*> NH is INTEGER
192*> The number of columns of T. NH >= NW.
193*> \endverbatim
194*>
195*> \param[out] T
196*> \verbatim
197*> T is COMPLEX*16 array, dimension (LDT,NW)
198*> \endverbatim
199*>
200*> \param[in] LDT
201*> \verbatim
202*> LDT is INTEGER
203*> The leading dimension of T just as declared in the
204*> calling subroutine. NW <= LDT
205*> \endverbatim
206*>
207*> \param[in] NV
208*> \verbatim
209*> NV is INTEGER
210*> The number of rows of work array WV available for
211*> workspace. NV >= NW.
212*> \endverbatim
213*>
214*> \param[out] WV
215*> \verbatim
216*> WV is COMPLEX*16 array, dimension (LDWV,NW)
217*> \endverbatim
218*>
219*> \param[in] LDWV
220*> \verbatim
221*> LDWV is INTEGER
222*> The leading dimension of W just as declared in the
223*> calling subroutine. NW <= LDV
224*> \endverbatim
225*>
226*> \param[out] WORK
227*> \verbatim
228*> WORK is COMPLEX*16 array, dimension (LWORK)
229*> On exit, WORK(1) is set to an estimate of the optimal value
230*> of LWORK for the given values of N, NW, KTOP and KBOT.
231*> \endverbatim
232*>
233*> \param[in] LWORK
234*> \verbatim
235*> LWORK is INTEGER
236*> The dimension of the work array WORK. LWORK = 2*NW
237*> suffices, but greater efficiency may result from larger
238*> values of LWORK.
239*>
240*> If LWORK = -1, then a workspace query is assumed; ZLAQR3
241*> only estimates the optimal workspace size for the given
242*> values of N, NW, KTOP and KBOT. The estimate is returned
243*> in WORK(1). No error message related to LWORK is issued
244*> by XERBLA. Neither H nor Z are accessed.
245*> \endverbatim
246*
247* Authors:
248* ========
249*
250*> \author Univ. of Tennessee
251*> \author Univ. of California Berkeley
252*> \author Univ. of Colorado Denver
253*> \author NAG Ltd.
254*
255*> \ingroup laqr3
256*
257*> \par Contributors:
258* ==================
259*>
260*> Karen Braman and Ralph Byers, Department of Mathematics,
261*> University of Kansas, USA
262*>
263* =====================================================================
264 SUBROUTINE zlaqr3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ,
265 $ IHIZ, Z, LDZ, NS, ND, SH, V, LDV, NH, T, LDT,
266 $ NV, WV, LDWV, WORK, LWORK )
267*
268* -- LAPACK auxiliary routine --
269* -- LAPACK is a software package provided by Univ. of Tennessee, --
270* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
271*
272* .. Scalar Arguments ..
273 INTEGER IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV,
274 $ LDZ, LWORK, N, ND, NH, NS, NV, NW
275 LOGICAL WANTT, WANTZ
276* ..
277* .. Array Arguments ..
278 COMPLEX*16 H( LDH, * ), SH( * ), T( LDT, * ), V( LDV, * ),
279 $ WORK( * ), WV( LDWV, * ), Z( LDZ, * )
280* ..
281*
282* ================================================================
283*
284* .. Parameters ..
285 COMPLEX*16 ZERO, ONE
286 PARAMETER ( ZERO = ( 0.0d0, 0.0d0 ),
287 $ one = ( 1.0d0, 0.0d0 ) )
288 DOUBLE PRECISION RZERO, RONE
289 PARAMETER ( RZERO = 0.0d0, rone = 1.0d0 )
290* ..
291* .. Local Scalars ..
292 COMPLEX*16 BETA, CDUM, S, TAU
293 DOUBLE PRECISION FOO, SAFMAX, SAFMIN, SMLNUM, ULP
294 INTEGER I, IFST, ILST, INFO, INFQR, J, JW, KCOL, KLN,
295 $ knt, krow, kwtop, ltop, lwk1, lwk2, lwk3,
296 $ lwkopt, nmin
297* ..
298* .. External Functions ..
299 DOUBLE PRECISION DLAMCH
300 INTEGER ILAENV
301 EXTERNAL dlamch, ilaenv
302* ..
303* .. External Subroutines ..
304 EXTERNAL zcopy, zgehrd, zgemm, zlacpy, zlahqr, zlaqr4,
306* ..
307* .. Intrinsic Functions ..
308 INTRINSIC abs, dble, dcmplx, dconjg, dimag, int, max, min
309* ..
310* .. Statement Functions ..
311 DOUBLE PRECISION CABS1
312* ..
313* .. Statement Function definitions ..
314 cabs1( cdum ) = abs( dble( cdum ) ) + abs( dimag( cdum ) )
315* ..
316* .. Executable Statements ..
317*
318* ==== Estimate optimal workspace. ====
319*
320 jw = min( nw, kbot-ktop+1 )
321 IF( jw.LE.2 ) THEN
322 lwkopt = 1
323 ELSE
324*
325* ==== Workspace query call to ZGEHRD ====
326*
327 CALL zgehrd( jw, 1, jw-1, t, ldt, work, work, -1, info )
328 lwk1 = int( work( 1 ) )
329*
330* ==== Workspace query call to ZUNMHR ====
331*
332 CALL zunmhr( 'R', 'N', jw, jw, 1, jw-1, t, ldt, work, v, ldv,
333 $ work, -1, info )
334 lwk2 = int( work( 1 ) )
335*
336* ==== Workspace query call to ZLAQR4 ====
337*
338 CALL zlaqr4( .true., .true., jw, 1, jw, t, ldt, sh, 1, jw, v,
339 $ ldv, work, -1, infqr )
340 lwk3 = int( work( 1 ) )
341*
342* ==== Optimal workspace ====
343*
344 lwkopt = max( jw+max( lwk1, lwk2 ), lwk3 )
345 END IF
346*
347* ==== Quick return in case of workspace query. ====
348*
349 IF( lwork.EQ.-1 ) THEN
350 work( 1 ) = dcmplx( lwkopt, 0 )
351 RETURN
352 END IF
353*
354* ==== Nothing to do ...
355* ... for an empty active block ... ====
356 ns = 0
357 nd = 0
358 work( 1 ) = one
359 IF( ktop.GT.kbot )
360 $ RETURN
361* ... nor for an empty deflation window. ====
362 IF( nw.LT.1 )
363 $ RETURN
364*
365* ==== Machine constants ====
366*
367 safmin = dlamch( 'SAFE MINIMUM' )
368 safmax = rone / safmin
369 ulp = dlamch( 'PRECISION' )
370 smlnum = safmin*( dble( n ) / ulp )
371*
372* ==== Setup deflation window ====
373*
374 jw = min( nw, kbot-ktop+1 )
375 kwtop = kbot - jw + 1
376 IF( kwtop.EQ.ktop ) THEN
377 s = zero
378 ELSE
379 s = h( kwtop, kwtop-1 )
380 END IF
381*
382 IF( kbot.EQ.kwtop ) THEN
383*
384* ==== 1-by-1 deflation window: not much to do ====
385*
386 sh( kwtop ) = h( kwtop, kwtop )
387 ns = 1
388 nd = 0
389 IF( cabs1( s ).LE.max( smlnum, ulp*cabs1( h( kwtop,
390 $ kwtop ) ) ) ) THEN
391 ns = 0
392 nd = 1
393 IF( kwtop.GT.ktop )
394 $ h( kwtop, kwtop-1 ) = zero
395 END IF
396 work( 1 ) = one
397 RETURN
398 END IF
399*
400* ==== Convert to spike-triangular form. (In case of a
401* . rare QR failure, this routine continues to do
402* . aggressive early deflation using that part of
403* . the deflation window that converged using INFQR
404* . here and there to keep track.) ====
405*
406 CALL zlacpy( 'U', jw, jw, h( kwtop, kwtop ), ldh, t, ldt )
407 CALL zcopy( jw-1, h( kwtop+1, kwtop ), ldh+1, t( 2, 1 ), ldt+1 )
408*
409 CALL zlaset( 'A', jw, jw, zero, one, v, ldv )
410 nmin = ilaenv( 12, 'ZLAQR3', 'SV', jw, 1, jw, lwork )
411 IF( jw.GT.nmin ) THEN
412 CALL zlaqr4( .true., .true., jw, 1, jw, t, ldt, sh( kwtop ), 1,
413 $ jw, v, ldv, work, lwork, infqr )
414 ELSE
415 CALL zlahqr( .true., .true., jw, 1, jw, t, ldt, sh( kwtop ), 1,
416 $ jw, v, ldv, infqr )
417 END IF
418*
419* ==== Deflation detection loop ====
420*
421 ns = jw
422 ilst = infqr + 1
423 DO 10 knt = infqr + 1, jw
424*
425* ==== Small spike tip deflation test ====
426*
427 foo = cabs1( t( ns, ns ) )
428 IF( foo.EQ.rzero )
429 $ foo = cabs1( s )
430 IF( cabs1( s )*cabs1( v( 1, ns ) ).LE.max( smlnum, ulp*foo ) )
431 $ THEN
432*
433* ==== One more converged eigenvalue ====
434*
435 ns = ns - 1
436 ELSE
437*
438* ==== One undeflatable eigenvalue. Move it up out of the
439* . way. (ZTREXC can not fail in this case.) ====
440*
441 ifst = ns
442 CALL ztrexc( 'V', jw, t, ldt, v, ldv, ifst, ilst, info )
443 ilst = ilst + 1
444 END IF
445 10 CONTINUE
446*
447* ==== Return to Hessenberg form ====
448*
449 IF( ns.EQ.0 )
450 $ s = zero
451*
452 IF( ns.LT.jw ) THEN
453*
454* ==== sorting the diagonal of T improves accuracy for
455* . graded matrices. ====
456*
457 DO 30 i = infqr + 1, ns
458 ifst = i
459 DO 20 j = i + 1, ns
460 IF( cabs1( t( j, j ) ).GT.cabs1( t( ifst, ifst ) ) )
461 $ ifst = j
462 20 CONTINUE
463 ilst = i
464 IF( ifst.NE.ilst )
465 $ CALL ztrexc( 'V', jw, t, ldt, v, ldv, ifst, ilst, info )
466 30 CONTINUE
467 END IF
468*
469* ==== Restore shift/eigenvalue array from T ====
470*
471 DO 40 i = infqr + 1, jw
472 sh( kwtop+i-1 ) = t( i, i )
473 40 CONTINUE
474*
475*
476 IF( ns.LT.jw .OR. s.EQ.zero ) THEN
477 IF( ns.GT.1 .AND. s.NE.zero ) THEN
478*
479* ==== Reflect spike back into lower triangle ====
480*
481 CALL zcopy( ns, v, ldv, work, 1 )
482 DO 50 i = 1, ns
483 work( i ) = dconjg( work( i ) )
484 50 CONTINUE
485 beta = work( 1 )
486 CALL zlarfg( ns, beta, work( 2 ), 1, tau )
487 work( 1 ) = one
488*
489 CALL zlaset( 'L', jw-2, jw-2, zero, zero, t( 3, 1 ), ldt )
490*
491 CALL zlarf( 'L', ns, jw, work, 1, dconjg( tau ), t, ldt,
492 $ work( jw+1 ) )
493 CALL zlarf( 'R', ns, ns, work, 1, tau, t, ldt,
494 $ work( jw+1 ) )
495 CALL zlarf( 'R', jw, ns, work, 1, tau, v, ldv,
496 $ work( jw+1 ) )
497*
498 CALL zgehrd( jw, 1, ns, t, ldt, work, work( jw+1 ),
499 $ lwork-jw, info )
500 END IF
501*
502* ==== Copy updated reduced window into place ====
503*
504 IF( kwtop.GT.1 )
505 $ h( kwtop, kwtop-1 ) = s*dconjg( v( 1, 1 ) )
506 CALL zlacpy( 'U', jw, jw, t, ldt, h( kwtop, kwtop ), ldh )
507 CALL zcopy( jw-1, t( 2, 1 ), ldt+1, h( kwtop+1, kwtop ),
508 $ ldh+1 )
509*
510* ==== Accumulate orthogonal matrix in order update
511* . H and Z, if requested. ====
512*
513 IF( ns.GT.1 .AND. s.NE.zero )
514 $ CALL zunmhr( 'R', 'N', jw, ns, 1, ns, t, ldt, work, v, ldv,
515 $ work( jw+1 ), lwork-jw, info )
516*
517* ==== Update vertical slab in H ====
518*
519 IF( wantt ) THEN
520 ltop = 1
521 ELSE
522 ltop = ktop
523 END IF
524 DO 60 krow = ltop, kwtop - 1, nv
525 kln = min( nv, kwtop-krow )
526 CALL zgemm( 'N', 'N', kln, jw, jw, one, h( krow, kwtop ),
527 $ ldh, v, ldv, zero, wv, ldwv )
528 CALL zlacpy( 'A', kln, jw, wv, ldwv, h( krow, kwtop ), ldh )
529 60 CONTINUE
530*
531* ==== Update horizontal slab in H ====
532*
533 IF( wantt ) THEN
534 DO 70 kcol = kbot + 1, n, nh
535 kln = min( nh, n-kcol+1 )
536 CALL zgemm( 'C', 'N', jw, kln, jw, one, v, ldv,
537 $ h( kwtop, kcol ), ldh, zero, t, ldt )
538 CALL zlacpy( 'A', jw, kln, t, ldt, h( kwtop, kcol ),
539 $ ldh )
540 70 CONTINUE
541 END IF
542*
543* ==== Update vertical slab in Z ====
544*
545 IF( wantz ) THEN
546 DO 80 krow = iloz, ihiz, nv
547 kln = min( nv, ihiz-krow+1 )
548 CALL zgemm( 'N', 'N', kln, jw, jw, one, z( krow, kwtop ),
549 $ ldz, v, ldv, zero, wv, ldwv )
550 CALL zlacpy( 'A', kln, jw, wv, ldwv, z( krow, kwtop ),
551 $ ldz )
552 80 CONTINUE
553 END IF
554 END IF
555*
556* ==== Return the number of deflations ... ====
557*
558 nd = jw - ns
559*
560* ==== ... and the number of shifts. (Subtracting
561* . INFQR from the spike length takes care
562* . of the case of a rare QR failure while
563* . calculating eigenvalues of the deflation
564* . window.) ====
565*
566 ns = ns - infqr
567*
568* ==== Return optimal workspace. ====
569*
570 work( 1 ) = dcmplx( lwkopt, 0 )
571*
572* ==== End of ZLAQR3 ====
573*
574 END
subroutine zcopy(n, zx, incx, zy, incy)
ZCOPY
Definition zcopy.f:81
subroutine zgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
ZGEHRD
Definition zgehrd.f:167
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
Definition zgemm.f:188
subroutine zlacpy(uplo, m, n, a, lda, b, ldb)
ZLACPY copies all or part of one two-dimensional array to another.
Definition zlacpy.f:103
subroutine zlahqr(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, info)
ZLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,...
Definition zlahqr.f:195
subroutine zlaqr3(wantt, wantz, n, ktop, kbot, nw, h, ldh, iloz, ihiz, z, ldz, ns, nd, sh, v, ldv, nh, t, ldt, nv, wv, ldwv, work, lwork)
ZLAQR3 performs the unitary similarity transformation of a Hessenberg matrix to detect and deflate fu...
Definition zlaqr3.f:267
subroutine zlaqr4(wantt, wantz, n, ilo, ihi, h, ldh, w, iloz, ihiz, z, ldz, work, lwork, info)
ZLAQR4 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur de...
Definition zlaqr4.f:247
subroutine zlarf(side, m, n, v, incv, tau, c, ldc, work)
ZLARF applies an elementary reflector to a general rectangular matrix.
Definition zlarf.f:128
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
Definition zlarfg.f:106
subroutine zlaset(uplo, m, n, alpha, beta, a, lda)
ZLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition zlaset.f:106
subroutine ztrexc(compq, n, t, ldt, q, ldq, ifst, ilst, info)
ZTREXC
Definition ztrexc.f:126
subroutine zunmhr(side, trans, m, n, ilo, ihi, a, lda, tau, c, ldc, work, lwork, info)
ZUNMHR
Definition zunmhr.f:178