LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dgbsvx()

subroutine dgbsvx ( character  fact,
character  trans,
integer  n,
integer  kl,
integer  ku,
integer  nrhs,
double precision, dimension( ldab, * )  ab,
integer  ldab,
double precision, dimension( ldafb, * )  afb,
integer  ldafb,
integer, dimension( * )  ipiv,
character  equed,
double precision, dimension( * )  r,
double precision, dimension( * )  c,
double precision, dimension( ldb, * )  b,
integer  ldb,
double precision, dimension( ldx, * )  x,
integer  ldx,
double precision  rcond,
double precision, dimension( * )  ferr,
double precision, dimension( * )  berr,
double precision, dimension( * )  work,
integer, dimension( * )  iwork,
integer  info 
)

DGBSVX computes the solution to system of linear equations A * X = B for GB matrices

Download DGBSVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DGBSVX uses the LU factorization to compute the solution to a real
 system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
 where A is a band matrix of order N with KL subdiagonals and KU
 superdiagonals, and X and B are N-by-NRHS matrices.

 Error bounds on the solution and a condition estimate are also
 provided.
Description:
 The following steps are performed by this subroutine:

 1. If FACT = 'E', real scaling factors are computed to equilibrate
    the system:
       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
    Whether or not the system will be equilibrated depends on the
    scaling of the matrix A, but if equilibration is used, A is
    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
    or diag(C)*B (if TRANS = 'T' or 'C').

 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
    matrix A (after equilibration if FACT = 'E') as
       A = L * U,
    where L is a product of permutation and unit lower triangular
    matrices with KL subdiagonals, and U is upper triangular with
    KL+KU superdiagonals.

 3. If some U(i,i)=0, so that U is exactly singular, then the routine
    returns with INFO = i. Otherwise, the factored form of A is used
    to estimate the condition number of the matrix A.  If the
    reciprocal of the condition number is less than machine precision,
    INFO = N+1 is returned as a warning, but the routine still goes on
    to solve for X and compute error bounds as described below.

 4. The system of equations is solved for X using the factored form
    of A.

 5. Iterative refinement is applied to improve the computed solution
    matrix and calculate error bounds and backward error estimates
    for it.

 6. If equilibration was used, the matrix X is premultiplied by
    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
    that it solves the original system before equilibration.
Parameters
[in]FACT
          FACT is CHARACTER*1
          Specifies whether or not the factored form of the matrix A is
          supplied on entry, and if not, whether the matrix A should be
          equilibrated before it is factored.
          = 'F':  On entry, AFB and IPIV contain the factored form of
                  A.  If EQUED is not 'N', the matrix A has been
                  equilibrated with scaling factors given by R and C.
                  AB, AFB, and IPIV are not modified.
          = 'N':  The matrix A will be copied to AFB and factored.
          = 'E':  The matrix A will be equilibrated if necessary, then
                  copied to AFB and factored.
[in]TRANS
          TRANS is CHARACTER*1
          Specifies the form of the system of equations.
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Transpose)
[in]N
          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.
[in]KL
          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.
[in]KU
          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.
[in]NRHS
          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.
[in,out]AB
          AB is DOUBLE PRECISION array, dimension (LDAB,N)
          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
          The j-th column of A is stored in the j-th column of the
          array AB as follows:
          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

          If FACT = 'F' and EQUED is not 'N', then A must have been
          equilibrated by the scaling factors in R and/or C.  AB is not
          modified if FACT = 'F' or 'N', or if FACT = 'E' and
          EQUED = 'N' on exit.

          On exit, if EQUED .ne. 'N', A is scaled as follows:
          EQUED = 'R':  A := diag(R) * A
          EQUED = 'C':  A := A * diag(C)
          EQUED = 'B':  A := diag(R) * A * diag(C).
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= KL+KU+1.
[in,out]AFB
          AFB is DOUBLE PRECISION array, dimension (LDAFB,N)
          If FACT = 'F', then AFB is an input argument and on entry
          contains details of the LU factorization of the band matrix
          A, as computed by DGBTRF.  U is stored as an upper triangular
          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
          and the multipliers used during the factorization are stored
          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
          the factored form of the equilibrated matrix A.

          If FACT = 'N', then AFB is an output argument and on exit
          returns details of the LU factorization of A.

          If FACT = 'E', then AFB is an output argument and on exit
          returns details of the LU factorization of the equilibrated
          matrix A (see the description of AB for the form of the
          equilibrated matrix).
[in]LDAFB
          LDAFB is INTEGER
          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
[in,out]IPIV
          IPIV is INTEGER array, dimension (N)
          If FACT = 'F', then IPIV is an input argument and on entry
          contains the pivot indices from the factorization A = L*U
          as computed by DGBTRF; row i of the matrix was interchanged
          with row IPIV(i).

          If FACT = 'N', then IPIV is an output argument and on exit
          contains the pivot indices from the factorization A = L*U
          of the original matrix A.

          If FACT = 'E', then IPIV is an output argument and on exit
          contains the pivot indices from the factorization A = L*U
          of the equilibrated matrix A.
[in,out]EQUED
          EQUED is CHARACTER*1
          Specifies the form of equilibration that was done.
          = 'N':  No equilibration (always true if FACT = 'N').
          = 'R':  Row equilibration, i.e., A has been premultiplied by
                  diag(R).
          = 'C':  Column equilibration, i.e., A has been postmultiplied
                  by diag(C).
          = 'B':  Both row and column equilibration, i.e., A has been
                  replaced by diag(R) * A * diag(C).
          EQUED is an input argument if FACT = 'F'; otherwise, it is an
          output argument.
[in,out]R
          R is DOUBLE PRECISION array, dimension (N)
          The row scale factors for A.  If EQUED = 'R' or 'B', A is
          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
          is not accessed.  R is an input argument if FACT = 'F';
          otherwise, R is an output argument.  If FACT = 'F' and
          EQUED = 'R' or 'B', each element of R must be positive.
[in,out]C
          C is DOUBLE PRECISION array, dimension (N)
          The column scale factors for A.  If EQUED = 'C' or 'B', A is
          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
          is not accessed.  C is an input argument if FACT = 'F';
          otherwise, C is an output argument.  If FACT = 'F' and
          EQUED = 'C' or 'B', each element of C must be positive.
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the right hand side matrix B.
          On exit,
          if EQUED = 'N', B is not modified;
          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
          diag(R)*B;
          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
          overwritten by diag(C)*B.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
[out]X
          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
          to the original system of equations.  Note that A and B are
          modified on exit if EQUED .ne. 'N', and the solution to the
          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
          and EQUED = 'R' or 'B'.
[in]LDX
          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).
[out]RCOND
          RCOND is DOUBLE PRECISION
          The estimate of the reciprocal condition number of the matrix
          A after equilibration (if done).  If RCOND is less than the
          machine precision (in particular, if RCOND = 0), the matrix
          is singular to working precision.  This condition is
          indicated by a return code of INFO > 0.
[out]FERR
          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.
[out]BERR
          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).
[out]WORK
          WORK is DOUBLE PRECISION array, dimension (MAX(1,3*N))
          On exit, WORK(1) contains the reciprocal pivot growth
          factor norm(A)/norm(U). The "max absolute element" norm is
          used. If WORK(1) is much less than 1, then the stability
          of the LU factorization of the (equilibrated) matrix A
          could be poor. This also means that the solution X, condition
          estimator RCOND, and forward error bound FERR could be
          unreliable. If factorization fails with 0<INFO<=N, then
          WORK(1) contains the reciprocal pivot growth factor for the
          leading INFO columns of A.
[out]IWORK
          IWORK is INTEGER array, dimension (N)
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, and i is
                <= N:  U(i,i) is exactly zero.  The factorization
                       has been completed, but the factor U is exactly
                       singular, so the solution and error bounds
                       could not be computed. RCOND = 0 is returned.
                = N+1: U is nonsingular, but RCOND is less than machine
                       precision, meaning that the matrix is singular
                       to working precision.  Nevertheless, the
                       solution and error bounds are computed because
                       there are a number of situations where the
                       computed solution can be more accurate than the
                       value of RCOND would suggest.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 366 of file dgbsvx.f.

369*
370* -- LAPACK driver routine --
371* -- LAPACK is a software package provided by Univ. of Tennessee, --
372* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
373*
374* .. Scalar Arguments ..
375 CHARACTER EQUED, FACT, TRANS
376 INTEGER INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
377 DOUBLE PRECISION RCOND
378* ..
379* .. Array Arguments ..
380 INTEGER IPIV( * ), IWORK( * )
381 DOUBLE PRECISION AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
382 $ BERR( * ), C( * ), FERR( * ), R( * ),
383 $ WORK( * ), X( LDX, * )
384* ..
385*
386* =====================================================================
387*
388* .. Parameters ..
389 DOUBLE PRECISION ZERO, ONE
390 parameter( zero = 0.0d+0, one = 1.0d+0 )
391* ..
392* .. Local Scalars ..
393 LOGICAL COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
394 CHARACTER NORM
395 INTEGER I, INFEQU, J, J1, J2
396 DOUBLE PRECISION AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
397 $ ROWCND, RPVGRW, SMLNUM
398* ..
399* .. External Functions ..
400 LOGICAL LSAME
401 DOUBLE PRECISION DLAMCH, DLANGB, DLANTB
402 EXTERNAL lsame, dlamch, dlangb, dlantb
403* ..
404* .. External Subroutines ..
405 EXTERNAL dcopy, dgbcon, dgbequ, dgbrfs, dgbtrf, dgbtrs,
407* ..
408* .. Intrinsic Functions ..
409 INTRINSIC abs, max, min
410* ..
411* .. Executable Statements ..
412*
413 info = 0
414 nofact = lsame( fact, 'N' )
415 equil = lsame( fact, 'E' )
416 notran = lsame( trans, 'N' )
417 IF( nofact .OR. equil ) THEN
418 equed = 'N'
419 rowequ = .false.
420 colequ = .false.
421 ELSE
422 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
423 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
424 smlnum = dlamch( 'Safe minimum' )
425 bignum = one / smlnum
426 END IF
427*
428* Test the input parameters.
429*
430 IF( .NOT.nofact .AND. .NOT.equil .AND. .NOT.lsame( fact, 'F' ) )
431 $ THEN
432 info = -1
433 ELSE IF( .NOT.notran .AND. .NOT.lsame( trans, 'T' ) .AND. .NOT.
434 $ lsame( trans, 'C' ) ) THEN
435 info = -2
436 ELSE IF( n.LT.0 ) THEN
437 info = -3
438 ELSE IF( kl.LT.0 ) THEN
439 info = -4
440 ELSE IF( ku.LT.0 ) THEN
441 info = -5
442 ELSE IF( nrhs.LT.0 ) THEN
443 info = -6
444 ELSE IF( ldab.LT.kl+ku+1 ) THEN
445 info = -8
446 ELSE IF( ldafb.LT.2*kl+ku+1 ) THEN
447 info = -10
448 ELSE IF( lsame( fact, 'F' ) .AND. .NOT.
449 $ ( rowequ .OR. colequ .OR. lsame( equed, 'N' ) ) ) THEN
450 info = -12
451 ELSE
452 IF( rowequ ) THEN
453 rcmin = bignum
454 rcmax = zero
455 DO 10 j = 1, n
456 rcmin = min( rcmin, r( j ) )
457 rcmax = max( rcmax, r( j ) )
458 10 CONTINUE
459 IF( rcmin.LE.zero ) THEN
460 info = -13
461 ELSE IF( n.GT.0 ) THEN
462 rowcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
463 ELSE
464 rowcnd = one
465 END IF
466 END IF
467 IF( colequ .AND. info.EQ.0 ) THEN
468 rcmin = bignum
469 rcmax = zero
470 DO 20 j = 1, n
471 rcmin = min( rcmin, c( j ) )
472 rcmax = max( rcmax, c( j ) )
473 20 CONTINUE
474 IF( rcmin.LE.zero ) THEN
475 info = -14
476 ELSE IF( n.GT.0 ) THEN
477 colcnd = max( rcmin, smlnum ) / min( rcmax, bignum )
478 ELSE
479 colcnd = one
480 END IF
481 END IF
482 IF( info.EQ.0 ) THEN
483 IF( ldb.LT.max( 1, n ) ) THEN
484 info = -16
485 ELSE IF( ldx.LT.max( 1, n ) ) THEN
486 info = -18
487 END IF
488 END IF
489 END IF
490*
491 IF( info.NE.0 ) THEN
492 CALL xerbla( 'DGBSVX', -info )
493 RETURN
494 END IF
495*
496 IF( equil ) THEN
497*
498* Compute row and column scalings to equilibrate the matrix A.
499*
500 CALL dgbequ( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
501 $ amax, infequ )
502 IF( infequ.EQ.0 ) THEN
503*
504* Equilibrate the matrix.
505*
506 CALL dlaqgb( n, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd,
507 $ amax, equed )
508 rowequ = lsame( equed, 'R' ) .OR. lsame( equed, 'B' )
509 colequ = lsame( equed, 'C' ) .OR. lsame( equed, 'B' )
510 END IF
511 END IF
512*
513* Scale the right hand side.
514*
515 IF( notran ) THEN
516 IF( rowequ ) THEN
517 DO 40 j = 1, nrhs
518 DO 30 i = 1, n
519 b( i, j ) = r( i )*b( i, j )
520 30 CONTINUE
521 40 CONTINUE
522 END IF
523 ELSE IF( colequ ) THEN
524 DO 60 j = 1, nrhs
525 DO 50 i = 1, n
526 b( i, j ) = c( i )*b( i, j )
527 50 CONTINUE
528 60 CONTINUE
529 END IF
530*
531 IF( nofact .OR. equil ) THEN
532*
533* Compute the LU factorization of the band matrix A.
534*
535 DO 70 j = 1, n
536 j1 = max( j-ku, 1 )
537 j2 = min( j+kl, n )
538 CALL dcopy( j2-j1+1, ab( ku+1-j+j1, j ), 1,
539 $ afb( kl+ku+1-j+j1, j ), 1 )
540 70 CONTINUE
541*
542 CALL dgbtrf( n, n, kl, ku, afb, ldafb, ipiv, info )
543*
544* Return if INFO is non-zero.
545*
546 IF( info.GT.0 ) THEN
547*
548* Compute the reciprocal pivot growth factor of the
549* leading rank-deficient INFO columns of A.
550*
551 anorm = zero
552 DO 90 j = 1, info
553 DO 80 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
554 anorm = max( anorm, abs( ab( i, j ) ) )
555 80 CONTINUE
556 90 CONTINUE
557 rpvgrw = dlantb( 'M', 'U', 'N', info, min( info-1, kl+ku ),
558 $ afb( max( 1, kl+ku+2-info ), 1 ), ldafb,
559 $ work )
560 IF( rpvgrw.EQ.zero ) THEN
561 rpvgrw = one
562 ELSE
563 rpvgrw = anorm / rpvgrw
564 END IF
565 work( 1 ) = rpvgrw
566 rcond = zero
567 RETURN
568 END IF
569 END IF
570*
571* Compute the norm of the matrix A and the
572* reciprocal pivot growth factor RPVGRW.
573*
574 IF( notran ) THEN
575 norm = '1'
576 ELSE
577 norm = 'I'
578 END IF
579 anorm = dlangb( norm, n, kl, ku, ab, ldab, work )
580 rpvgrw = dlantb( 'M', 'U', 'N', n, kl+ku, afb, ldafb, work )
581 IF( rpvgrw.EQ.zero ) THEN
582 rpvgrw = one
583 ELSE
584 rpvgrw = dlangb( 'M', n, kl, ku, ab, ldab, work ) / rpvgrw
585 END IF
586*
587* Compute the reciprocal of the condition number of A.
588*
589 CALL dgbcon( norm, n, kl, ku, afb, ldafb, ipiv, anorm, rcond,
590 $ work, iwork, info )
591*
592* Compute the solution matrix X.
593*
594 CALL dlacpy( 'Full', n, nrhs, b, ldb, x, ldx )
595 CALL dgbtrs( trans, n, kl, ku, nrhs, afb, ldafb, ipiv, x, ldx,
596 $ info )
597*
598* Use iterative refinement to improve the computed solution and
599* compute error bounds and backward error estimates for it.
600*
601 CALL dgbrfs( trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv,
602 $ b, ldb, x, ldx, ferr, berr, work, iwork, info )
603*
604* Transform the solution matrix X to a solution of the original
605* system.
606*
607 IF( notran ) THEN
608 IF( colequ ) THEN
609 DO 110 j = 1, nrhs
610 DO 100 i = 1, n
611 x( i, j ) = c( i )*x( i, j )
612 100 CONTINUE
613 110 CONTINUE
614 DO 120 j = 1, nrhs
615 ferr( j ) = ferr( j ) / colcnd
616 120 CONTINUE
617 END IF
618 ELSE IF( rowequ ) THEN
619 DO 140 j = 1, nrhs
620 DO 130 i = 1, n
621 x( i, j ) = r( i )*x( i, j )
622 130 CONTINUE
623 140 CONTINUE
624 DO 150 j = 1, nrhs
625 ferr( j ) = ferr( j ) / rowcnd
626 150 CONTINUE
627 END IF
628*
629* Set INFO = N+1 if the matrix is singular to working precision.
630*
631 IF( rcond.LT.dlamch( 'Epsilon' ) )
632 $ info = n + 1
633*
634 work( 1 ) = rpvgrw
635 RETURN
636*
637* End of DGBSVX
638*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
subroutine dgbcon(norm, n, kl, ku, ab, ldab, ipiv, anorm, rcond, work, iwork, info)
DGBCON
Definition dgbcon.f:146
subroutine dgbequ(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)
DGBEQU
Definition dgbequ.f:153
subroutine dgbrfs(trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DGBRFS
Definition dgbrfs.f:205
subroutine dgbtrf(m, n, kl, ku, ab, ldab, ipiv, info)
DGBTRF
Definition dgbtrf.f:144
subroutine dgbtrs(trans, n, kl, ku, nrhs, ab, ldab, ipiv, b, ldb, info)
DGBTRS
Definition dgbtrs.f:138
subroutine dlacpy(uplo, m, n, a, lda, b, ldb)
DLACPY copies all or part of one two-dimensional array to another.
Definition dlacpy.f:103
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlangb(norm, n, kl, ku, ab, ldab, work)
DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlangb.f:124
double precision function dlantb(norm, uplo, diag, n, k, ab, ldab, work)
DLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm,...
Definition dlantb.f:140
subroutine dlaqgb(m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, equed)
DLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ.
Definition dlaqgb.f:159
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
Here is the call graph for this function:
Here is the caller graph for this function: