LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dlangb.f
Go to the documentation of this file.
1*> \brief \b DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value of any element of general band matrix.
2*
3* =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6* http://www.netlib.org/lapack/explore-html/
7*
8*> Download DLANGB + dependencies
9*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlangb.f">
10*> [TGZ]</a>
11*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlangb.f">
12*> [ZIP]</a>
13*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlangb.f">
14*> [TXT]</a>
15*
16* Definition:
17* ===========
18*
19* DOUBLE PRECISION FUNCTION DLANGB( NORM, N, KL, KU, AB, LDAB,
20* WORK )
21*
22* .. Scalar Arguments ..
23* CHARACTER NORM
24* INTEGER KL, KU, LDAB, N
25* ..
26* .. Array Arguments ..
27* DOUBLE PRECISION AB( LDAB, * ), WORK( * )
28* ..
29*
30*
31*> \par Purpose:
32* =============
33*>
34*> \verbatim
35*>
36*> DLANGB returns the value of the one norm, or the Frobenius norm, or
37*> the infinity norm, or the element of largest absolute value of an
38*> n by n band matrix A, with kl sub-diagonals and ku super-diagonals.
39*> \endverbatim
40*>
41*> \return DLANGB
42*> \verbatim
43*>
44*> DLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
45*> (
46*> ( norm1(A), NORM = '1', 'O' or 'o'
47*> (
48*> ( normI(A), NORM = 'I' or 'i'
49*> (
50*> ( normF(A), NORM = 'F', 'f', 'E' or 'e'
51*>
52*> where norm1 denotes the one norm of a matrix (maximum column sum),
53*> normI denotes the infinity norm of a matrix (maximum row sum) and
54*> normF denotes the Frobenius norm of a matrix (square root of sum of
55*> squares). Note that max(abs(A(i,j))) is not a consistent matrix norm.
56*> \endverbatim
57*
58* Arguments:
59* ==========
60*
61*> \param[in] NORM
62*> \verbatim
63*> NORM is CHARACTER*1
64*> Specifies the value to be returned in DLANGB as described
65*> above.
66*> \endverbatim
67*>
68*> \param[in] N
69*> \verbatim
70*> N is INTEGER
71*> The order of the matrix A. N >= 0. When N = 0, DLANGB is
72*> set to zero.
73*> \endverbatim
74*>
75*> \param[in] KL
76*> \verbatim
77*> KL is INTEGER
78*> The number of sub-diagonals of the matrix A. KL >= 0.
79*> \endverbatim
80*>
81*> \param[in] KU
82*> \verbatim
83*> KU is INTEGER
84*> The number of super-diagonals of the matrix A. KU >= 0.
85*> \endverbatim
86*>
87*> \param[in] AB
88*> \verbatim
89*> AB is DOUBLE PRECISION array, dimension (LDAB,N)
90*> The band matrix A, stored in rows 1 to KL+KU+1. The j-th
91*> column of A is stored in the j-th column of the array AB as
92*> follows:
93*> AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).
94*> \endverbatim
95*>
96*> \param[in] LDAB
97*> \verbatim
98*> LDAB is INTEGER
99*> The leading dimension of the array AB. LDAB >= KL+KU+1.
100*> \endverbatim
101*>
102*> \param[out] WORK
103*> \verbatim
104*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
105*> where LWORK >= N when NORM = 'I'; otherwise, WORK is not
106*> referenced.
107*> \endverbatim
108*
109* Authors:
110* ========
111*
112*> \author Univ. of Tennessee
113*> \author Univ. of California Berkeley
114*> \author Univ. of Colorado Denver
115*> \author NAG Ltd.
116*
117*> \ingroup langb
118*
119* =====================================================================
120 DOUBLE PRECISION FUNCTION dlangb( NORM, N, KL, KU, AB, LDAB,
121 $ WORK )
122*
123* -- LAPACK auxiliary routine --
124* -- LAPACK is a software package provided by Univ. of Tennessee, --
125* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
126*
127* .. Scalar Arguments ..
128 CHARACTER norm
129 INTEGER kl, ku, ldab, n
130* ..
131* .. Array Arguments ..
132 DOUBLE PRECISION ab( ldab, * ), work( * )
133* ..
134*
135* =====================================================================
136*
137*
138* .. Parameters ..
139 DOUBLE PRECISION one, zero
140 parameter( one = 1.0d+0, zero = 0.0d+0 )
141* ..
142* .. Local Scalars ..
143 INTEGER i, j, k, l
144 DOUBLE PRECISION scale, sum, VALUE, temp
145* ..
146* .. External Subroutines ..
147 EXTERNAL dlassq
148* ..
149* .. External Functions ..
150 LOGICAL lsame, disnan
151 EXTERNAL lsame, disnan
152* ..
153* .. Intrinsic Functions ..
154 INTRINSIC abs, max, min, sqrt
155* ..
156* .. Executable Statements ..
157*
158 IF( n.EQ.0 ) THEN
159 VALUE = zero
160 ELSE IF( lsame( norm, 'M' ) ) THEN
161*
162* Find max(abs(A(i,j))).
163*
164 VALUE = zero
165 DO 20 j = 1, n
166 DO 10 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
167 temp = abs( ab( i, j ) )
168 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
169 10 CONTINUE
170 20 CONTINUE
171 ELSE IF( ( lsame( norm, 'O' ) ) .OR. ( norm.EQ.'1' ) ) THEN
172*
173* Find norm1(A).
174*
175 VALUE = zero
176 DO 40 j = 1, n
177 sum = zero
178 DO 30 i = max( ku+2-j, 1 ), min( n+ku+1-j, kl+ku+1 )
179 sum = sum + abs( ab( i, j ) )
180 30 CONTINUE
181 IF( VALUE.LT.sum .OR. disnan( sum ) ) VALUE = sum
182 40 CONTINUE
183 ELSE IF( lsame( norm, 'I' ) ) THEN
184*
185* Find normI(A).
186*
187 DO 50 i = 1, n
188 work( i ) = zero
189 50 CONTINUE
190 DO 70 j = 1, n
191 k = ku + 1 - j
192 DO 60 i = max( 1, j-ku ), min( n, j+kl )
193 work( i ) = work( i ) + abs( ab( k+i, j ) )
194 60 CONTINUE
195 70 CONTINUE
196 VALUE = zero
197 DO 80 i = 1, n
198 temp = work( i )
199 IF( VALUE.LT.temp .OR. disnan( temp ) ) VALUE = temp
200 80 CONTINUE
201 ELSE IF( ( lsame( norm, 'F' ) ) .OR.
202 $ ( lsame( norm, 'E' ) ) ) THEN
203*
204* Find normF(A).
205*
206 scale = zero
207 sum = one
208 DO 90 j = 1, n
209 l = max( 1, j-ku )
210 k = ku + 1 - j + l
211 CALL dlassq( min( n, j+kl )-l+1, ab( k, j ), 1, scale,
212 $ sum )
213 90 CONTINUE
214 VALUE = scale*sqrt( sum )
215 END IF
216*
217 dlangb = VALUE
218 RETURN
219*
220* End of DLANGB
221*
222 END
logical function disnan(din)
DISNAN tests input for NaN.
Definition disnan.f:57
double precision function dlangb(norm, n, kl, ku, ab, ldab, work)
DLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlangb.f:122
subroutine dlassq(n, x, incx, scale, sumsq)
DLASSQ updates a sum of squares represented in scaled form.
Definition dlassq.f90:122
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48