LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dlaqgb()

subroutine dlaqgb ( integer m,
integer n,
integer kl,
integer ku,
double precision, dimension( ldab, * ) ab,
integer ldab,
double precision, dimension( * ) r,
double precision, dimension( * ) c,
double precision rowcnd,
double precision colcnd,
double precision amax,
character equed )

DLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ.

Download DLAQGB + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DLAQGB equilibrates a general M by N band matrix A with KL
!> subdiagonals and KU superdiagonals using the row and scaling factors
!> in the vectors R and C.
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in]KL
!>          KL is INTEGER
!>          The number of subdiagonals within the band of A.  KL >= 0.
!> 
[in]KU
!>          KU is INTEGER
!>          The number of superdiagonals within the band of A.  KU >= 0.
!> 
[in,out]AB
!>          AB is DOUBLE PRECISION array, dimension (LDAB,N)
!>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
!>          The j-th column of A is stored in the j-th column of the
!>          array AB as follows:
!>          AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)
!>
!>          On exit, the equilibrated matrix, in the same storage format
!>          as A.  See EQUED for the form of the equilibrated matrix.
!> 
[in]LDAB
!>          LDAB is INTEGER
!>          The leading dimension of the array AB.  LDA >= KL+KU+1.
!> 
[in]R
!>          R is DOUBLE PRECISION array, dimension (M)
!>          The row scale factors for A.
!> 
[in]C
!>          C is DOUBLE PRECISION array, dimension (N)
!>          The column scale factors for A.
!> 
[in]ROWCND
!>          ROWCND is DOUBLE PRECISION
!>          Ratio of the smallest R(i) to the largest R(i).
!> 
[in]COLCND
!>          COLCND is DOUBLE PRECISION
!>          Ratio of the smallest C(i) to the largest C(i).
!> 
[in]AMAX
!>          AMAX is DOUBLE PRECISION
!>          Absolute value of largest matrix entry.
!> 
[out]EQUED
!>          EQUED is CHARACTER*1
!>          Specifies the form of equilibration that was done.
!>          = 'N':  No equilibration
!>          = 'R':  Row equilibration, i.e., A has been premultiplied by
!>                  diag(R).
!>          = 'C':  Column equilibration, i.e., A has been postmultiplied
!>                  by diag(C).
!>          = 'B':  Both row and column equilibration, i.e., A has been
!>                  replaced by diag(R) * A * diag(C).
!> 
Internal Parameters:
!>  THRESH is a threshold value used to decide if row or column scaling
!>  should be done based on the ratio of the row or column scaling
!>  factors.  If ROWCND < THRESH, row scaling is done, and if
!>  COLCND < THRESH, column scaling is done.
!>
!>  LARGE and SMALL are threshold values used to decide if row scaling
!>  should be done based on the absolute size of the largest matrix
!>  element.  If AMAX > LARGE or AMAX < SMALL, row scaling is done.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 155 of file dlaqgb.f.

158*
159* -- LAPACK auxiliary routine --
160* -- LAPACK is a software package provided by Univ. of Tennessee, --
161* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
162*
163* .. Scalar Arguments ..
164 CHARACTER EQUED
165 INTEGER KL, KU, LDAB, M, N
166 DOUBLE PRECISION AMAX, COLCND, ROWCND
167* ..
168* .. Array Arguments ..
169 DOUBLE PRECISION AB( LDAB, * ), C( * ), R( * )
170* ..
171*
172* =====================================================================
173*
174* .. Parameters ..
175 DOUBLE PRECISION ONE, THRESH
176 parameter( one = 1.0d+0, thresh = 0.1d+0 )
177* ..
178* .. Local Scalars ..
179 INTEGER I, J
180 DOUBLE PRECISION CJ, LARGE, SMALL
181* ..
182* .. External Functions ..
183 DOUBLE PRECISION DLAMCH
184 EXTERNAL dlamch
185* ..
186* .. Intrinsic Functions ..
187 INTRINSIC max, min
188* ..
189* .. Executable Statements ..
190*
191* Quick return if possible
192*
193 IF( m.LE.0 .OR. n.LE.0 ) THEN
194 equed = 'N'
195 RETURN
196 END IF
197*
198* Initialize LARGE and SMALL.
199*
200 small = dlamch( 'Safe minimum' ) / dlamch( 'Precision' )
201 large = one / small
202*
203 IF( rowcnd.GE.thresh .AND. amax.GE.small .AND. amax.LE.large )
204 $ THEN
205*
206* No row scaling
207*
208 IF( colcnd.GE.thresh ) THEN
209*
210* No column scaling
211*
212 equed = 'N'
213 ELSE
214*
215* Column scaling
216*
217 DO 20 j = 1, n
218 cj = c( j )
219 DO 10 i = max( 1, j-ku ), min( m, j+kl )
220 ab( ku+1+i-j, j ) = cj*ab( ku+1+i-j, j )
221 10 CONTINUE
222 20 CONTINUE
223 equed = 'C'
224 END IF
225 ELSE IF( colcnd.GE.thresh ) THEN
226*
227* Row scaling, no column scaling
228*
229 DO 40 j = 1, n
230 DO 30 i = max( 1, j-ku ), min( m, j+kl )
231 ab( ku+1+i-j, j ) = r( i )*ab( ku+1+i-j, j )
232 30 CONTINUE
233 40 CONTINUE
234 equed = 'R'
235 ELSE
236*
237* Row and column scaling
238*
239 DO 60 j = 1, n
240 cj = c( j )
241 DO 50 i = max( 1, j-ku ), min( m, j+kl )
242 ab( ku+1+i-j, j ) = cj*r( i )*ab( ku+1+i-j, j )
243 50 CONTINUE
244 60 CONTINUE
245 equed = 'B'
246 END IF
247*
248 RETURN
249*
250* End of DLAQGB
251*
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
Here is the caller graph for this function: