LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgeevx()

subroutine sgeevx ( character balanc,
character jobvl,
character jobvr,
character sense,
integer n,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) wr,
real, dimension( * ) wi,
real, dimension( ldvl, * ) vl,
integer ldvl,
real, dimension( ldvr, * ) vr,
integer ldvr,
integer ilo,
integer ihi,
real, dimension( * ) scale,
real abnrm,
real, dimension( * ) rconde,
real, dimension( * ) rcondv,
real, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer info )

SGEEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices

Download SGEEVX + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SGEEVX computes for an N-by-N real nonsymmetric matrix A, the
!> eigenvalues and, optionally, the left and/or right eigenvectors.
!>
!> Optionally also, it computes a balancing transformation to improve
!> the conditioning of the eigenvalues and eigenvectors (ILO, IHI,
!> SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues
!> (RCONDE), and reciprocal condition numbers for the right
!> eigenvectors (RCONDV).
!>
!> The right eigenvector v(j) of A satisfies
!>                  A * v(j) = lambda(j) * v(j)
!> where lambda(j) is its eigenvalue.
!> The left eigenvector u(j) of A satisfies
!>               u(j)**H * A = lambda(j) * u(j)**H
!> where u(j)**H denotes the conjugate-transpose of u(j).
!>
!> The computed eigenvectors are normalized to have Euclidean norm
!> equal to 1 and largest component real.
!>
!> Balancing a matrix means permuting the rows and columns to make it
!> more nearly upper triangular, and applying a diagonal similarity
!> transformation D * A * D**(-1), where D is a diagonal matrix, to
!> make its rows and columns closer in norm and the condition numbers
!> of its eigenvalues and eigenvectors smaller.  The computed
!> reciprocal condition numbers correspond to the balanced matrix.
!> Permuting rows and columns will not change the condition numbers
!> (in exact arithmetic) but diagonal scaling will.  For further
!> explanation of balancing, see section 4.10.2 of the LAPACK
!> Users' Guide.
!> 
Parameters
[in]BALANC
!>          BALANC is CHARACTER*1
!>          Indicates how the input matrix should be diagonally scaled
!>          and/or permuted to improve the conditioning of its
!>          eigenvalues.
!>          = 'N': Do not diagonally scale or permute;
!>          = 'P': Perform permutations to make the matrix more nearly
!>                 upper triangular. Do not diagonally scale;
!>          = 'S': Diagonally scale the matrix, i.e. replace A by
!>                 D*A*D**(-1), where D is a diagonal matrix chosen
!>                 to make the rows and columns of A more equal in
!>                 norm. Do not permute;
!>          = 'B': Both diagonally scale and permute A.
!>
!>          Computed reciprocal condition numbers will be for the matrix
!>          after balancing and/or permuting. Permuting does not change
!>          condition numbers (in exact arithmetic), but balancing does.
!> 
[in]JOBVL
!>          JOBVL is CHARACTER*1
!>          = 'N': left eigenvectors of A are not computed;
!>          = 'V': left eigenvectors of A are computed.
!>          If SENSE = 'E' or 'B', JOBVL must = 'V'.
!> 
[in]JOBVR
!>          JOBVR is CHARACTER*1
!>          = 'N': right eigenvectors of A are not computed;
!>          = 'V': right eigenvectors of A are computed.
!>          If SENSE = 'E' or 'B', JOBVR must = 'V'.
!> 
[in]SENSE
!>          SENSE is CHARACTER*1
!>          Determines which reciprocal condition numbers are computed.
!>          = 'N': None are computed;
!>          = 'E': Computed for eigenvalues only;
!>          = 'V': Computed for right eigenvectors only;
!>          = 'B': Computed for eigenvalues and right eigenvectors.
!>
!>          If SENSE = 'E' or 'B', both left and right eigenvectors
!>          must also be computed (JOBVL = 'V' and JOBVR = 'V').
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrix A. N >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the N-by-N matrix A.
!>          On exit, A has been overwritten.  If JOBVL = 'V' or
!>          JOBVR = 'V', A contains the real Schur form of the balanced
!>          version of the input matrix A.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,N).
!> 
[out]WR
!>          WR is REAL array, dimension (N)
!> 
[out]WI
!>          WI is REAL array, dimension (N)
!>          WR and WI contain the real and imaginary parts,
!>          respectively, of the computed eigenvalues.  Complex
!>          conjugate pairs of eigenvalues will appear consecutively
!>          with the eigenvalue having the positive imaginary part
!>          first.
!> 
[out]VL
!>          VL is REAL array, dimension (LDVL,N)
!>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
!>          after another in the columns of VL, in the same order
!>          as their eigenvalues.
!>          If JOBVL = 'N', VL is not referenced.
!>          If the j-th eigenvalue is real, then u(j) = VL(:,j),
!>          the j-th column of VL.
!>          If the j-th and (j+1)-st eigenvalues form a complex
!>          conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and
!>          u(j+1) = VL(:,j) - i*VL(:,j+1).
!> 
[in]LDVL
!>          LDVL is INTEGER
!>          The leading dimension of the array VL.  LDVL >= 1; if
!>          JOBVL = 'V', LDVL >= N.
!> 
[out]VR
!>          VR is REAL array, dimension (LDVR,N)
!>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
!>          after another in the columns of VR, in the same order
!>          as their eigenvalues.
!>          If JOBVR = 'N', VR is not referenced.
!>          If the j-th eigenvalue is real, then v(j) = VR(:,j),
!>          the j-th column of VR.
!>          If the j-th and (j+1)-st eigenvalues form a complex
!>          conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and
!>          v(j+1) = VR(:,j) - i*VR(:,j+1).
!> 
[in]LDVR
!>          LDVR is INTEGER
!>          The leading dimension of the array VR.  LDVR >= 1, and if
!>          JOBVR = 'V', LDVR >= N.
!> 
[out]ILO
!>          ILO is INTEGER
!> 
[out]IHI
!>          IHI is INTEGER
!>          ILO and IHI are integer values determined when A was
!>          balanced.  The balanced A(i,j) = 0 if I > J and
!>          J = 1,...,ILO-1 or I = IHI+1,...,N.
!> 
[out]SCALE
!>          SCALE is REAL array, dimension (N)
!>          Details of the permutations and scaling factors applied
!>          when balancing A.  If P(j) is the index of the row and column
!>          interchanged with row and column j, and D(j) is the scaling
!>          factor applied to row and column j, then
!>          SCALE(J) = P(J),    for J = 1,...,ILO-1
!>                   = D(J),    for J = ILO,...,IHI
!>                   = P(J)     for J = IHI+1,...,N.
!>          The order in which the interchanges are made is N to IHI+1,
!>          then 1 to ILO-1.
!> 
[out]ABNRM
!>          ABNRM is REAL
!>          The one-norm of the balanced matrix (the maximum
!>          of the sum of absolute values of elements of any column).
!> 
[out]RCONDE
!>          RCONDE is REAL array, dimension (N)
!>          RCONDE(j) is the reciprocal condition number of the j-th
!>          eigenvalue.
!> 
[out]RCONDV
!>          RCONDV is REAL array, dimension (N)
!>          RCONDV(j) is the reciprocal condition number of the j-th
!>          right eigenvector.
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.   If SENSE = 'N' or 'E',
!>          LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V',
!>          LWORK >= 3*N.  If SENSE = 'V' or 'B', LWORK >= N*(N+6).
!>          For good performance, LWORK must generally be larger.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (2*N-2)
!>          If SENSE = 'N' or 'E', not referenced.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = i, the QR algorithm failed to compute all the
!>                eigenvalues, and no eigenvectors or condition numbers
!>                have been computed; elements 1:ILO-1 and i+1:N of WR
!>                and WI contain eigenvalues which have converged.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.

Definition at line 301 of file sgeevx.f.

305 implicit none
306*
307* -- LAPACK driver routine --
308* -- LAPACK is a software package provided by Univ. of Tennessee, --
309* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
310*
311* .. Scalar Arguments ..
312 CHARACTER BALANC, JOBVL, JOBVR, SENSE
313 INTEGER IHI, ILO, INFO, LDA, LDVL, LDVR, LWORK, N
314 REAL ABNRM
315* ..
316* .. Array Arguments ..
317 INTEGER IWORK( * )
318 REAL A( LDA, * ), RCONDE( * ), RCONDV( * ),
319 $ SCALE( * ), VL( LDVL, * ), VR( LDVR, * ),
320 $ WI( * ), WORK( * ), WR( * )
321* ..
322*
323* =====================================================================
324*
325* .. Parameters ..
326 REAL ZERO, ONE
327 parameter( zero = 0.0e0, one = 1.0e0 )
328* ..
329* .. Local Scalars ..
330 LOGICAL LQUERY, SCALEA, WANTVL, WANTVR, WNTSNB, WNTSNE,
331 $ WNTSNN, WNTSNV
332 CHARACTER JOB, SIDE
333 INTEGER HSWORK, I, ICOND, IERR, ITAU, IWRK, K,
334 $ LWORK_TREVC, MAXWRK, MINWRK, NOUT
335 REAL ANRM, BIGNUM, CS, CSCALE, EPS, R, SCL, SMLNUM,
336 $ SN
337* ..
338* .. Local Arrays ..
339 LOGICAL SELECT( 1 )
340 REAL DUM( 1 )
341* ..
342* .. External Subroutines ..
343 EXTERNAL sgebak, sgebal, sgehrd, shseqr,
344 $ slacpy,
346 $ strsna, xerbla
347* ..
348* .. External Functions ..
349 LOGICAL LSAME
350 INTEGER ISAMAX, ILAENV
351 REAL SLAMCH, SLANGE, SLAPY2,
352 $ SNRM2, SROUNDUP_LWORK
353 EXTERNAL lsame, isamax, ilaenv,
354 $ slamch, slange, slapy2,
356* ..
357* .. Intrinsic Functions ..
358 INTRINSIC max, sqrt
359* ..
360* .. Executable Statements ..
361*
362* Test the input arguments
363*
364 info = 0
365 lquery = ( lwork.EQ.-1 )
366 wantvl = lsame( jobvl, 'V' )
367 wantvr = lsame( jobvr, 'V' )
368 wntsnn = lsame( sense, 'N' )
369 wntsne = lsame( sense, 'E' )
370 wntsnv = lsame( sense, 'V' )
371 wntsnb = lsame( sense, 'B' )
372 IF( .NOT.( lsame( balanc, 'N' ) .OR. lsame( balanc, 'S' )
373 $ .OR.
374 $ lsame( balanc, 'P' ) .OR.
375 $ lsame( balanc, 'B' ) ) )
376 $ THEN
377 info = -1
378 ELSE IF( ( .NOT.wantvl ) .AND.
379 $ ( .NOT.lsame( jobvl, 'N' ) ) ) THEN
380 info = -2
381 ELSE IF( ( .NOT.wantvr ) .AND.
382 $ ( .NOT.lsame( jobvr, 'N' ) ) ) THEN
383 info = -3
384 ELSE IF( .NOT.( wntsnn .OR. wntsne .OR. wntsnb .OR. wntsnv ) .OR.
385 $ ( ( wntsne .OR. wntsnb ) .AND. .NOT.( wantvl .AND.
386 $ wantvr ) ) ) THEN
387 info = -4
388 ELSE IF( n.LT.0 ) THEN
389 info = -5
390 ELSE IF( lda.LT.max( 1, n ) ) THEN
391 info = -7
392 ELSE IF( ldvl.LT.1 .OR. ( wantvl .AND. ldvl.LT.n ) ) THEN
393 info = -11
394 ELSE IF( ldvr.LT.1 .OR. ( wantvr .AND. ldvr.LT.n ) ) THEN
395 info = -13
396 END IF
397*
398* Compute workspace
399* (Note: Comments in the code beginning "Workspace:" describe the
400* minimal amount of workspace needed at that point in the code,
401* as well as the preferred amount for good performance.
402* NB refers to the optimal block size for the immediately
403* following subroutine, as returned by ILAENV.
404* HSWORK refers to the workspace preferred by SHSEQR, as
405* calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
406* the worst case.)
407*
408 IF( info.EQ.0 ) THEN
409 IF( n.EQ.0 ) THEN
410 minwrk = 1
411 maxwrk = 1
412 ELSE
413 maxwrk = n + n*ilaenv( 1, 'SGEHRD', ' ', n, 1, n, 0 )
414*
415 IF( wantvl ) THEN
416 CALL strevc3( 'L', 'B', SELECT, n, a, lda,
417 $ vl, ldvl, vr, ldvr,
418 $ n, nout, work, -1, ierr )
419 lwork_trevc = int( work(1) )
420 maxwrk = max( maxwrk, n + lwork_trevc )
421 CALL shseqr( 'S', 'V', n, 1, n, a, lda, wr, wi, vl,
422 $ ldvl,
423 $ work, -1, info )
424 ELSE IF( wantvr ) THEN
425 CALL strevc3( 'R', 'B', SELECT, n, a, lda,
426 $ vl, ldvl, vr, ldvr,
427 $ n, nout, work, -1, ierr )
428 lwork_trevc = int( work(1) )
429 maxwrk = max( maxwrk, n + lwork_trevc )
430 CALL shseqr( 'S', 'V', n, 1, n, a, lda, wr, wi, vr,
431 $ ldvr,
432 $ work, -1, info )
433 ELSE
434 IF( wntsnn ) THEN
435 CALL shseqr( 'E', 'N', n, 1, n, a, lda, wr, wi, vr,
436 $ ldvr, work, -1, info )
437 ELSE
438 CALL shseqr( 'S', 'N', n, 1, n, a, lda, wr, wi, vr,
439 $ ldvr, work, -1, info )
440 END IF
441 END IF
442 hswork = int( work(1) )
443*
444 IF( ( .NOT.wantvl ) .AND. ( .NOT.wantvr ) ) THEN
445 minwrk = 2*n
446 IF( .NOT.wntsnn )
447 $ minwrk = max( minwrk, n*n+6*n )
448 maxwrk = max( maxwrk, hswork )
449 IF( .NOT.wntsnn )
450 $ maxwrk = max( maxwrk, n*n + 6*n )
451 ELSE
452 minwrk = 3*n
453 IF( ( .NOT.wntsnn ) .AND. ( .NOT.wntsne ) )
454 $ minwrk = max( minwrk, n*n + 6*n )
455 maxwrk = max( maxwrk, hswork )
456 maxwrk = max( maxwrk, n + ( n - 1 )*ilaenv( 1,
457 $ 'SORGHR',
458 $ ' ', n, 1, n, -1 ) )
459 IF( ( .NOT.wntsnn ) .AND. ( .NOT.wntsne ) )
460 $ maxwrk = max( maxwrk, n*n + 6*n )
461 maxwrk = max( maxwrk, 3*n )
462 END IF
463 maxwrk = max( maxwrk, minwrk )
464 END IF
465 work( 1 ) = sroundup_lwork(maxwrk)
466*
467 IF( lwork.LT.minwrk .AND. .NOT.lquery ) THEN
468 info = -21
469 END IF
470 END IF
471*
472 IF( info.NE.0 ) THEN
473 CALL xerbla( 'SGEEVX', -info )
474 RETURN
475 ELSE IF( lquery ) THEN
476 RETURN
477 END IF
478*
479* Quick return if possible
480*
481 IF( n.EQ.0 )
482 $ RETURN
483*
484* Get machine constants
485*
486 eps = slamch( 'P' )
487 smlnum = slamch( 'S' )
488 bignum = one / smlnum
489 smlnum = sqrt( smlnum ) / eps
490 bignum = one / smlnum
491*
492* Scale A if max element outside range [SMLNUM,BIGNUM]
493*
494 icond = 0
495 anrm = slange( 'M', n, n, a, lda, dum )
496 scalea = .false.
497 IF( anrm.GT.zero .AND. anrm.LT.smlnum ) THEN
498 scalea = .true.
499 cscale = smlnum
500 ELSE IF( anrm.GT.bignum ) THEN
501 scalea = .true.
502 cscale = bignum
503 END IF
504 IF( scalea )
505 $ CALL slascl( 'G', 0, 0, anrm, cscale, n, n, a, lda, ierr )
506*
507* Balance the matrix and compute ABNRM
508*
509 CALL sgebal( balanc, n, a, lda, ilo, ihi, scale, ierr )
510 abnrm = slange( '1', n, n, a, lda, dum )
511 IF( scalea ) THEN
512 dum( 1 ) = abnrm
513 CALL slascl( 'G', 0, 0, cscale, anrm, 1, 1, dum, 1, ierr )
514 abnrm = dum( 1 )
515 END IF
516*
517* Reduce to upper Hessenberg form
518* (Workspace: need 2*N, prefer N+N*NB)
519*
520 itau = 1
521 iwrk = itau + n
522 CALL sgehrd( n, ilo, ihi, a, lda, work( itau ), work( iwrk ),
523 $ lwork-iwrk+1, ierr )
524*
525 IF( wantvl ) THEN
526*
527* Want left eigenvectors
528* Copy Householder vectors to VL
529*
530 side = 'L'
531 CALL slacpy( 'L', n, n, a, lda, vl, ldvl )
532*
533* Generate orthogonal matrix in VL
534* (Workspace: need 2*N-1, prefer N+(N-1)*NB)
535*
536 CALL sorghr( n, ilo, ihi, vl, ldvl, work( itau ),
537 $ work( iwrk ),
538 $ lwork-iwrk+1, ierr )
539*
540* Perform QR iteration, accumulating Schur vectors in VL
541* (Workspace: need 1, prefer HSWORK (see comments) )
542*
543 iwrk = itau
544 CALL shseqr( 'S', 'V', n, ilo, ihi, a, lda, wr, wi, vl,
545 $ ldvl,
546 $ work( iwrk ), lwork-iwrk+1, info )
547*
548 IF( wantvr ) THEN
549*
550* Want left and right eigenvectors
551* Copy Schur vectors to VR
552*
553 side = 'B'
554 CALL slacpy( 'F', n, n, vl, ldvl, vr, ldvr )
555 END IF
556*
557 ELSE IF( wantvr ) THEN
558*
559* Want right eigenvectors
560* Copy Householder vectors to VR
561*
562 side = 'R'
563 CALL slacpy( 'L', n, n, a, lda, vr, ldvr )
564*
565* Generate orthogonal matrix in VR
566* (Workspace: need 2*N-1, prefer N+(N-1)*NB)
567*
568 CALL sorghr( n, ilo, ihi, vr, ldvr, work( itau ),
569 $ work( iwrk ),
570 $ lwork-iwrk+1, ierr )
571*
572* Perform QR iteration, accumulating Schur vectors in VR
573* (Workspace: need 1, prefer HSWORK (see comments) )
574*
575 iwrk = itau
576 CALL shseqr( 'S', 'V', n, ilo, ihi, a, lda, wr, wi, vr,
577 $ ldvr,
578 $ work( iwrk ), lwork-iwrk+1, info )
579*
580 ELSE
581*
582* Compute eigenvalues only
583* If condition numbers desired, compute Schur form
584*
585 IF( wntsnn ) THEN
586 job = 'E'
587 ELSE
588 job = 'S'
589 END IF
590*
591* (Workspace: need 1, prefer HSWORK (see comments) )
592*
593 iwrk = itau
594 CALL shseqr( job, 'N', n, ilo, ihi, a, lda, wr, wi, vr,
595 $ ldvr,
596 $ work( iwrk ), lwork-iwrk+1, info )
597 END IF
598*
599* If INFO .NE. 0 from SHSEQR, then quit
600*
601 IF( info.NE.0 )
602 $ GO TO 50
603*
604 IF( wantvl .OR. wantvr ) THEN
605*
606* Compute left and/or right eigenvectors
607* (Workspace: need 3*N, prefer N + 2*N*NB)
608*
609 CALL strevc3( side, 'B', SELECT, n, a, lda, vl, ldvl, vr,
610 $ ldvr,
611 $ n, nout, work( iwrk ), lwork-iwrk+1, ierr )
612 END IF
613*
614* Compute condition numbers if desired
615* (Workspace: need N*N+6*N unless SENSE = 'E')
616*
617 IF( .NOT.wntsnn ) THEN
618 CALL strsna( sense, 'A', SELECT, n, a, lda, vl, ldvl, vr,
619 $ ldvr,
620 $ rconde, rcondv, n, nout, work( iwrk ), n, iwork,
621 $ icond )
622 END IF
623*
624 IF( wantvl ) THEN
625*
626* Undo balancing of left eigenvectors
627*
628 CALL sgebak( balanc, 'L', n, ilo, ihi, scale, n, vl, ldvl,
629 $ ierr )
630*
631* Normalize left eigenvectors and make largest component real
632*
633 DO 20 i = 1, n
634 IF( wi( i ).EQ.zero ) THEN
635 scl = one / snrm2( n, vl( 1, i ), 1 )
636 CALL sscal( n, scl, vl( 1, i ), 1 )
637 ELSE IF( wi( i ).GT.zero ) THEN
638 scl = one / slapy2( snrm2( n, vl( 1, i ), 1 ),
639 $ snrm2( n, vl( 1, i+1 ), 1 ) )
640 CALL sscal( n, scl, vl( 1, i ), 1 )
641 CALL sscal( n, scl, vl( 1, i+1 ), 1 )
642 DO 10 k = 1, n
643 work( k ) = vl( k, i )**2 + vl( k, i+1 )**2
644 10 CONTINUE
645 k = isamax( n, work, 1 )
646 CALL slartg( vl( k, i ), vl( k, i+1 ), cs, sn, r )
647 CALL srot( n, vl( 1, i ), 1, vl( 1, i+1 ), 1, cs, sn )
648 vl( k, i+1 ) = zero
649 END IF
650 20 CONTINUE
651 END IF
652*
653 IF( wantvr ) THEN
654*
655* Undo balancing of right eigenvectors
656*
657 CALL sgebak( balanc, 'R', n, ilo, ihi, scale, n, vr, ldvr,
658 $ ierr )
659*
660* Normalize right eigenvectors and make largest component real
661*
662 DO 40 i = 1, n
663 IF( wi( i ).EQ.zero ) THEN
664 scl = one / snrm2( n, vr( 1, i ), 1 )
665 CALL sscal( n, scl, vr( 1, i ), 1 )
666 ELSE IF( wi( i ).GT.zero ) THEN
667 scl = one / slapy2( snrm2( n, vr( 1, i ), 1 ),
668 $ snrm2( n, vr( 1, i+1 ), 1 ) )
669 CALL sscal( n, scl, vr( 1, i ), 1 )
670 CALL sscal( n, scl, vr( 1, i+1 ), 1 )
671 DO 30 k = 1, n
672 work( k ) = vr( k, i )**2 + vr( k, i+1 )**2
673 30 CONTINUE
674 k = isamax( n, work, 1 )
675 CALL slartg( vr( k, i ), vr( k, i+1 ), cs, sn, r )
676 CALL srot( n, vr( 1, i ), 1, vr( 1, i+1 ), 1, cs, sn )
677 vr( k, i+1 ) = zero
678 END IF
679 40 CONTINUE
680 END IF
681*
682* Undo scaling if necessary
683*
684 50 CONTINUE
685 IF( scalea ) THEN
686 CALL slascl( 'G', 0, 0, cscale, anrm, n-info, 1,
687 $ wr( info+1 ),
688 $ max( n-info, 1 ), ierr )
689 CALL slascl( 'G', 0, 0, cscale, anrm, n-info, 1,
690 $ wi( info+1 ),
691 $ max( n-info, 1 ), ierr )
692 IF( info.EQ.0 ) THEN
693 IF( ( wntsnv .OR. wntsnb ) .AND. icond.EQ.0 )
694 $ CALL slascl( 'G', 0, 0, cscale, anrm, n, 1, rcondv, n,
695 $ ierr )
696 ELSE
697 CALL slascl( 'G', 0, 0, cscale, anrm, ilo-1, 1, wr, n,
698 $ ierr )
699 CALL slascl( 'G', 0, 0, cscale, anrm, ilo-1, 1, wi, n,
700 $ ierr )
701 END IF
702 END IF
703*
704 work( 1 ) = sroundup_lwork(maxwrk)
705 RETURN
706*
707* End of SGEEVX
708*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgebak(job, side, n, ilo, ihi, scale, m, v, ldv, info)
SGEBAK
Definition sgebak.f:128
subroutine sgebal(job, n, a, lda, ilo, ihi, scale, info)
SGEBAL
Definition sgebal.f:161
subroutine sgehrd(n, ilo, ihi, a, lda, tau, work, lwork, info)
SGEHRD
Definition sgehrd.f:166
subroutine shseqr(job, compz, n, ilo, ihi, h, ldh, wr, wi, z, ldz, work, lwork, info)
SHSEQR
Definition shseqr.f:314
integer function isamax(n, sx, incx)
ISAMAX
Definition isamax.f:71
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
real function slamch(cmach)
SLAMCH
Definition slamch.f:68
real function slange(norm, m, n, a, lda, work)
SLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition slange.f:112
real function slapy2(x, y)
SLAPY2 returns sqrt(x2+y2).
Definition slapy2.f:61
subroutine slartg(f, g, c, s, r)
SLARTG generates a plane rotation with real cosine and real sine.
Definition slartg.f90:111
subroutine slascl(type, kl, ku, cfrom, cto, m, n, a, lda, info)
SLASCL multiplies a general rectangular matrix by a real scalar defined as cto/cfrom.
Definition slascl.f:142
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real(wp) function snrm2(n, x, incx)
SNRM2
Definition snrm2.f90:89
subroutine srot(n, sx, incx, sy, incy, c, s)
SROT
Definition srot.f:92
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine sscal(n, sa, sx, incx)
SSCAL
Definition sscal.f:79
subroutine strevc3(side, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, mm, m, work, lwork, info)
STREVC3
Definition strevc3.f:235
subroutine strsna(job, howmny, select, n, t, ldt, vl, ldvl, vr, ldvr, s, sep, mm, m, work, ldwork, iwork, info)
STRSNA
Definition strsna.f:264
subroutine sorghr(n, ilo, ihi, a, lda, tau, work, lwork, info)
SORGHR
Definition sorghr.f:125
Here is the call graph for this function:
Here is the caller graph for this function: