LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ shseqr()

subroutine shseqr ( character job,
character compz,
integer n,
integer ilo,
integer ihi,
real, dimension( ldh, * ) h,
integer ldh,
real, dimension( * ) wr,
real, dimension( * ) wi,
real, dimension( ldz, * ) z,
integer ldz,
real, dimension( * ) work,
integer lwork,
integer info )

SHSEQR

Download SHSEQR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!>    SHSEQR computes the eigenvalues of a Hessenberg matrix H
!>    and, optionally, the matrices T and Z from the Schur decomposition
!>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
!>    Schur form), and Z is the orthogonal matrix of Schur vectors.
!>
!>    Optionally Z may be postmultiplied into an input orthogonal
!>    matrix Q so that this routine can give the Schur factorization
!>    of a matrix A which has been reduced to the Hessenberg form H
!>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
!> 
Parameters
[in]JOB
!>          JOB is CHARACTER*1
!>           = 'E':  compute eigenvalues only;
!>           = 'S':  compute eigenvalues and the Schur form T.
!> 
[in]COMPZ
!>          COMPZ is CHARACTER*1
!>           = 'N':  no Schur vectors are computed;
!>           = 'I':  Z is initialized to the unit matrix and the matrix Z
!>                   of Schur vectors of H is returned;
!>           = 'V':  Z must contain an orthogonal matrix Q on entry, and
!>                   the product Q*Z is returned.
!> 
[in]N
!>          N is INTEGER
!>           The order of the matrix H.  N >= 0.
!> 
[in]ILO
!>          ILO is INTEGER
!> 
[in]IHI
!>          IHI is INTEGER
!>
!>           It is assumed that H is already upper triangular in rows
!>           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
!>           set by a previous call to SGEBAL, and then passed to ZGEHRD
!>           when the matrix output by SGEBAL is reduced to Hessenberg
!>           form. Otherwise ILO and IHI should be set to 1 and N
!>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
!>           If N = 0, then ILO = 1 and IHI = 0.
!> 
[in,out]H
!>          H is REAL array, dimension (LDH,N)
!>           On entry, the upper Hessenberg matrix H.
!>           On exit, if INFO = 0 and JOB = 'S', then H contains the
!>           upper quasi-triangular matrix T from the Schur decomposition
!>           (the Schur form); 2-by-2 diagonal blocks (corresponding to
!>           complex conjugate pairs of eigenvalues) are returned in
!>           standard form, with H(i,i) = H(i+1,i+1) and
!>           H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and JOB = 'E', the
!>           contents of H are unspecified on exit.  (The output value of
!>           H when INFO > 0 is given under the description of INFO
!>           below.)
!>
!>           Unlike earlier versions of SHSEQR, this subroutine may
!>           explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1
!>           or j = IHI+1, IHI+2, ... N.
!> 
[in]LDH
!>          LDH is INTEGER
!>           The leading dimension of the array H. LDH >= max(1,N).
!> 
[out]WR
!>          WR is REAL array, dimension (N)
!> 
[out]WI
!>          WI is REAL array, dimension (N)
!>
!>           The real and imaginary parts, respectively, of the computed
!>           eigenvalues. If two eigenvalues are computed as a complex
!>           conjugate pair, they are stored in consecutive elements of
!>           WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and
!>           WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in
!>           the same order as on the diagonal of the Schur form returned
!>           in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
!>           diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
!>           WI(i+1) = -WI(i).
!> 
[in,out]Z
!>          Z is REAL array, dimension (LDZ,N)
!>           If COMPZ = 'N', Z is not referenced.
!>           If COMPZ = 'I', on entry Z need not be set and on exit,
!>           if INFO = 0, Z contains the orthogonal matrix Z of the Schur
!>           vectors of H.  If COMPZ = 'V', on entry Z must contain an
!>           N-by-N matrix Q, which is assumed to be equal to the unit
!>           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
!>           if INFO = 0, Z contains Q*Z.
!>           Normally Q is the orthogonal matrix generated by SORGHR
!>           after the call to SGEHRD which formed the Hessenberg matrix
!>           H. (The output value of Z when INFO > 0 is given under
!>           the description of INFO below.)
!> 
[in]LDZ
!>          LDZ is INTEGER
!>           The leading dimension of the array Z.  if COMPZ = 'I' or
!>           COMPZ = 'V', then LDZ >= MAX(1,N).  Otherwise, LDZ >= 1.
!> 
[out]WORK
!>          WORK is REAL array, dimension (LWORK)
!>           On exit, if INFO = 0, WORK(1) returns an estimate of
!>           the optimal value for LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>           The dimension of the array WORK.  LWORK >= max(1,N)
!>           is sufficient and delivers very good and sometimes
!>           optimal performance.  However, LWORK as large as 11*N
!>           may be required for optimal performance.  A workspace
!>           query is recommended to determine the optimal workspace
!>           size.
!>
!>           If LWORK = -1, then SHSEQR does a workspace query.
!>           In this case, SHSEQR checks the input parameters and
!>           estimates the optimal workspace size for the given
!>           values of N, ILO and IHI.  The estimate is returned
!>           in WORK(1).  No error message related to LWORK is
!>           issued by XERBLA.  Neither H nor Z are accessed.
!> 
[out]INFO
!>          INFO is INTEGER
!>             = 0:  successful exit
!>             < 0:  if INFO = -i, the i-th argument had an illegal
!>                    value
!>             > 0:  if INFO = i, SHSEQR failed to compute all of
!>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
!>                and WI contain those eigenvalues which have been
!>                successfully computed.  (Failures are rare.)
!>
!>                If INFO > 0 and JOB = 'E', then on exit, the
!>                remaining unconverged eigenvalues are the eigen-
!>                values of the upper Hessenberg matrix rows and
!>                columns ILO through INFO of the final, output
!>                value of H.
!>
!>                If INFO > 0 and JOB   = 'S', then on exit
!>
!>           (*)  (initial value of H)*U  = U*(final value of H)
!>
!>                where U is an orthogonal matrix.  The final
!>                value of H is upper Hessenberg and quasi-triangular
!>                in rows and columns INFO+1 through IHI.
!>
!>                If INFO > 0 and COMPZ = 'V', then on exit
!>
!>                  (final value of Z)  =  (initial value of Z)*U
!>
!>                where U is the orthogonal matrix in (*) (regard-
!>                less of the value of JOB.)
!>
!>                If INFO > 0 and COMPZ = 'I', then on exit
!>                      (final value of Z)  = U
!>                where U is the orthogonal matrix in (*) (regard-
!>                less of the value of JOB.)
!>
!>                If INFO > 0 and COMPZ = 'N', then Z is not
!>                accessed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA
Further Details:
!>
!>             Default values supplied by
!>             ILAENV(ISPEC,'SHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
!>             It is suggested that these defaults be adjusted in order
!>             to attain best performance in each particular
!>             computational environment.
!>
!>            ISPEC=12: The SLAHQR vs SLAQR0 crossover point.
!>                      Default: 75. (Must be at least 11.)
!>
!>            ISPEC=13: Recommended deflation window size.
!>                      This depends on ILO, IHI and NS.  NS is the
!>                      number of simultaneous shifts returned
!>                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
!>                      The default for (IHI-ILO+1) <= 500 is NS.
!>                      The default for (IHI-ILO+1) >  500 is 3*NS/2.
!>
!>            ISPEC=14: Nibble crossover point. (See IPARMQ for
!>                      details.)  Default: 14% of deflation window
!>                      size.
!>
!>            ISPEC=15: Number of simultaneous shifts in a multishift
!>                      QR iteration.
!>
!>                      If IHI-ILO+1 is ...
!>
!>                      greater than      ...but less    ... the
!>                      or equal to ...      than        default is
!>
!>                           1               30          NS =   2(+)
!>                          30               60          NS =   4(+)
!>                          60              150          NS =  10(+)
!>                         150              590          NS =  **
!>                         590             3000          NS =  64
!>                        3000             6000          NS = 128
!>                        6000             infinity      NS = 256
!>
!>                  (+)  By default some or all matrices of this order
!>                       are passed to the implicit double shift routine
!>                       SLAHQR and this parameter is ignored.  See
!>                       ISPEC=12 above and comments in IPARMQ for
!>                       details.
!>
!>                 (**)  The asterisks (**) indicate an ad-hoc
!>                       function of N increasing from 10 to 64.
!>
!>            ISPEC=16: Select structured matrix multiply.
!>                      If the number of simultaneous shifts (specified
!>                      by ISPEC=15) is less than 14, then the default
!>                      for ISPEC=16 is 0.  Otherwise the default for
!>                      ISPEC=16 is 2.
!> 
References:
  K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
  Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
  Performance, SIAM Journal of Matrix Analysis, volume 23, pages
  929--947, 2002.

K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948–973, 2002.

Definition at line 312 of file shseqr.f.

314*
315* -- LAPACK computational routine --
316* -- LAPACK is a software package provided by Univ. of Tennessee, --
317* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
318*
319* .. Scalar Arguments ..
320 INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N
321 CHARACTER COMPZ, JOB
322* ..
323* .. Array Arguments ..
324 REAL H( LDH, * ), WI( * ), WORK( * ), WR( * ),
325 $ Z( LDZ, * )
326* ..
327*
328* =====================================================================
329*
330* .. Parameters ..
331*
332* ==== Matrices of order NTINY or smaller must be processed by
333* . SLAHQR because of insufficient subdiagonal scratch space.
334* . (This is a hard limit.) ====
335 INTEGER NTINY
336 parameter( ntiny = 15 )
337*
338* ==== NL allocates some local workspace to help small matrices
339* . through a rare SLAHQR failure. NL > NTINY = 15 is
340* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
341* . mended. (The default value of NMIN is 75.) Using NL = 49
342* . allows up to six simultaneous shifts and a 16-by-16
343* . deflation window. ====
344 INTEGER NL
345 parameter( nl = 49 )
346 REAL ZERO, ONE
347 parameter( zero = 0.0e0, one = 1.0e0 )
348* ..
349* .. Local Arrays ..
350 REAL HL( NL, NL ), WORKL( NL )
351* ..
352* .. Local Scalars ..
353 INTEGER I, KBOT, NMIN
354 LOGICAL INITZ, LQUERY, WANTT, WANTZ
355* ..
356* .. External Functions ..
357 INTEGER ILAENV
358 LOGICAL LSAME
359 REAL SROUNDUP_LWORK
360 EXTERNAL ilaenv, lsame, sroundup_lwork
361* ..
362* .. External Subroutines ..
363 EXTERNAL slacpy, slahqr, slaqr0, slaset,
364 $ xerbla
365* ..
366* .. Intrinsic Functions ..
367 INTRINSIC max, min, real
368* ..
369* .. Executable Statements ..
370*
371* ==== Decode and check the input parameters. ====
372*
373 wantt = lsame( job, 'S' )
374 initz = lsame( compz, 'I' )
375 wantz = initz .OR. lsame( compz, 'V' )
376 work( 1 ) = sroundup_lwork( max( 1, n ) )
377 lquery = lwork.EQ.-1
378*
379 info = 0
380 IF( .NOT.lsame( job, 'E' ) .AND. .NOT.wantt ) THEN
381 info = -1
382 ELSE IF( .NOT.lsame( compz, 'N' ) .AND. .NOT.wantz ) THEN
383 info = -2
384 ELSE IF( n.LT.0 ) THEN
385 info = -3
386 ELSE IF( ilo.LT.1 .OR. ilo.GT.max( 1, n ) ) THEN
387 info = -4
388 ELSE IF( ihi.LT.min( ilo, n ) .OR. ihi.GT.n ) THEN
389 info = -5
390 ELSE IF( ldh.LT.max( 1, n ) ) THEN
391 info = -7
392 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.max( 1, n ) ) ) THEN
393 info = -11
394 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
395 info = -13
396 END IF
397*
398 IF( info.NE.0 ) THEN
399*
400* ==== Quick return in case of invalid argument. ====
401*
402 CALL xerbla( 'SHSEQR', -info )
403 RETURN
404*
405 ELSE IF( n.EQ.0 ) THEN
406*
407* ==== Quick return in case N = 0; nothing to do. ====
408*
409 RETURN
410*
411 ELSE IF( lquery ) THEN
412*
413* ==== Quick return in case of a workspace query ====
414*
415 CALL slaqr0( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, ilo,
416 $ ihi, z, ldz, work, lwork, info )
417* ==== Ensure reported workspace size is backward-compatible with
418* . previous LAPACK versions. ====
419 work( 1 ) = max( real( max( 1, n ) ), work( 1 ) )
420 RETURN
421*
422 ELSE
423*
424* ==== copy eigenvalues isolated by SGEBAL ====
425*
426 DO 10 i = 1, ilo - 1
427 wr( i ) = h( i, i )
428 wi( i ) = zero
429 10 CONTINUE
430 DO 20 i = ihi + 1, n
431 wr( i ) = h( i, i )
432 wi( i ) = zero
433 20 CONTINUE
434*
435* ==== Initialize Z, if requested ====
436*
437 IF( initz )
438 $ CALL slaset( 'A', n, n, zero, one, z, ldz )
439*
440* ==== Quick return if possible ====
441*
442 IF( ilo.EQ.ihi ) THEN
443 wr( ilo ) = h( ilo, ilo )
444 wi( ilo ) = zero
445 RETURN
446 END IF
447*
448* ==== SLAHQR/SLAQR0 crossover point ====
449*
450 nmin = ilaenv( 12, 'SHSEQR', job( : 1 ) // compz( : 1 ), n,
451 $ ilo, ihi, lwork )
452 nmin = max( ntiny, nmin )
453*
454* ==== SLAQR0 for big matrices; SLAHQR for small ones ====
455*
456 IF( n.GT.nmin ) THEN
457 CALL slaqr0( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
458 $ ilo,
459 $ ihi, z, ldz, work, lwork, info )
460 ELSE
461*
462* ==== Small matrix ====
463*
464 CALL slahqr( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
465 $ ilo,
466 $ ihi, z, ldz, info )
467*
468 IF( info.GT.0 ) THEN
469*
470* ==== A rare SLAHQR failure! SLAQR0 sometimes succeeds
471* . when SLAHQR fails. ====
472*
473 kbot = info
474*
475 IF( n.GE.nl ) THEN
476*
477* ==== Larger matrices have enough subdiagonal scratch
478* . space to call SLAQR0 directly. ====
479*
480 CALL slaqr0( wantt, wantz, n, ilo, kbot, h, ldh,
481 $ wr,
482 $ wi, ilo, ihi, z, ldz, work, lwork, info )
483*
484 ELSE
485*
486* ==== Tiny matrices don't have enough subdiagonal
487* . scratch space to benefit from SLAQR0. Hence,
488* . tiny matrices must be copied into a larger
489* . array before calling SLAQR0. ====
490*
491 CALL slacpy( 'A', n, n, h, ldh, hl, nl )
492 hl( n+1, n ) = zero
493 CALL slaset( 'A', nl, nl-n, zero, zero, hl( 1,
494 $ n+1 ),
495 $ nl )
496 CALL slaqr0( wantt, wantz, nl, ilo, kbot, hl, nl,
497 $ wr,
498 $ wi, ilo, ihi, z, ldz, workl, nl, info )
499 IF( wantt .OR. info.NE.0 )
500 $ CALL slacpy( 'A', n, n, hl, nl, h, ldh )
501 END IF
502 END IF
503 END IF
504*
505* ==== Clear out the trash, if necessary. ====
506*
507 IF( ( wantt .OR. info.NE.0 ) .AND. n.GT.2 )
508 $ CALL slaset( 'L', n-2, n-2, zero, zero, h( 3, 1 ), ldh )
509*
510* ==== Ensure reported workspace size is backward-compatible with
511* . previous LAPACK versions. ====
512*
513 work( 1 ) = max( real( max( 1, n ) ), work( 1 ) )
514 END IF
515*
516* ==== End of SHSEQR ====
517*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
subroutine slahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, info)
SLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,...
Definition slahqr.f:205
subroutine slaqr0(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work, lwork, info)
SLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur de...
Definition slaqr0.f:254
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: