LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Modules Pages

◆ shseqr()

subroutine shseqr ( character job,
character compz,
integer n,
integer ilo,
integer ihi,
real, dimension( ldh, * ) h,
integer ldh,
real, dimension( * ) wr,
real, dimension( * ) wi,
real, dimension( ldz, * ) z,
integer ldz,
real, dimension( * ) work,
integer lwork,
integer info )

SHSEQR

Download SHSEQR + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!> !> SHSEQR computes the eigenvalues of a Hessenberg matrix H !> and, optionally, the matrices T and Z from the Schur decomposition !> H = Z T Z**T, where T is an upper quasi-triangular matrix (the !> Schur form), and Z is the orthogonal matrix of Schur vectors. !> !> Optionally Z may be postmultiplied into an input orthogonal !> matrix Q so that this routine can give the Schur factorization !> of a matrix A which has been reduced to the Hessenberg form H !> by the orthogonal matrix Q: A = Q*H*Q**T = (QZ)*T*(QZ)**T. !>
Parameters
[in]JOB
!> JOB is CHARACTER*1 !> = 'E': compute eigenvalues only; !> = 'S': compute eigenvalues and the Schur form T. !>
[in]COMPZ
!> COMPZ is CHARACTER*1 !> = 'N': no Schur vectors are computed; !> = 'I': Z is initialized to the unit matrix and the matrix Z !> of Schur vectors of H is returned; !> = 'V': Z must contain an orthogonal matrix Q on entry, and !> the product Q*Z is returned. !>
[in]N
!> N is INTEGER !> The order of the matrix H. N >= 0. !>
[in]ILO
!> ILO is INTEGER !>
[in]IHI
!> IHI is INTEGER !> !> It is assumed that H is already upper triangular in rows !> and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally !> set by a previous call to SGEBAL, and then passed to ZGEHRD !> when the matrix output by SGEBAL is reduced to Hessenberg !> form. Otherwise ILO and IHI should be set to 1 and N !> respectively. If N > 0, then 1 <= ILO <= IHI <= N. !> If N = 0, then ILO = 1 and IHI = 0. !>
[in,out]H
!> H is REAL array, dimension (LDH,N) !> On entry, the upper Hessenberg matrix H. !> On exit, if INFO = 0 and JOB = 'S', then H contains the !> upper quasi-triangular matrix T from the Schur decomposition !> (the Schur form); 2-by-2 diagonal blocks (corresponding to !> complex conjugate pairs of eigenvalues) are returned in !> standard form, with H(i,i) = H(i+1,i+1) and !> H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and JOB = 'E', the !> contents of H are unspecified on exit. (The output value of !> H when INFO > 0 is given under the description of INFO !> below.) !> !> Unlike earlier versions of SHSEQR, this subroutine may !> explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1 !> or j = IHI+1, IHI+2, ... N. !>
[in]LDH
!> LDH is INTEGER !> The leading dimension of the array H. LDH >= max(1,N). !>
[out]WR
!> WR is REAL array, dimension (N) !>
[out]WI
!> WI is REAL array, dimension (N) !> !> The real and imaginary parts, respectively, of the computed !> eigenvalues. If two eigenvalues are computed as a complex !> conjugate pair, they are stored in consecutive elements of !> WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and !> WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in !> the same order as on the diagonal of the Schur form returned !> in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2 !> diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and !> WI(i+1) = -WI(i). !>
[in,out]Z
!> Z is REAL array, dimension (LDZ,N) !> If COMPZ = 'N', Z is not referenced. !> If COMPZ = 'I', on entry Z need not be set and on exit, !> if INFO = 0, Z contains the orthogonal matrix Z of the Schur !> vectors of H. If COMPZ = 'V', on entry Z must contain an !> N-by-N matrix Q, which is assumed to be equal to the unit !> matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit, !> if INFO = 0, Z contains Q*Z. !> Normally Q is the orthogonal matrix generated by SORGHR !> after the call to SGEHRD which formed the Hessenberg matrix !> H. (The output value of Z when INFO > 0 is given under !> the description of INFO below.) !>
[in]LDZ
!> LDZ is INTEGER !> The leading dimension of the array Z. if COMPZ = 'I' or !> COMPZ = 'V', then LDZ >= MAX(1,N). Otherwise, LDZ >= 1. !>
[out]WORK
!> WORK is REAL array, dimension (LWORK) !> On exit, if INFO = 0, WORK(1) returns an estimate of !> the optimal value for LWORK. !>
[in]LWORK
!> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= max(1,N) !> is sufficient and delivers very good and sometimes !> optimal performance. However, LWORK as large as 11*N !> may be required for optimal performance. A workspace !> query is recommended to determine the optimal workspace !> size. !> !> If LWORK = -1, then SHSEQR does a workspace query. !> In this case, SHSEQR checks the input parameters and !> estimates the optimal workspace size for the given !> values of N, ILO and IHI. The estimate is returned !> in WORK(1). No error message related to LWORK is !> issued by XERBLA. Neither H nor Z are accessed. !>
[out]INFO
!> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal !> value !> > 0: if INFO = i, SHSEQR failed to compute all of !> the eigenvalues. Elements 1:ilo-1 and i+1:n of WR !> and WI contain those eigenvalues which have been !> successfully computed. (Failures are rare.) !> !> If INFO > 0 and JOB = 'E', then on exit, the !> remaining unconverged eigenvalues are the eigen- !> values of the upper Hessenberg matrix rows and !> columns ILO through INFO of the final, output !> value of H. !> !> If INFO > 0 and JOB = 'S', then on exit !> !> (*) (initial value of H)*U = U*(final value of H) !> !> where U is an orthogonal matrix. The final !> value of H is upper Hessenberg and quasi-triangular !> in rows and columns INFO+1 through IHI. !> !> If INFO > 0 and COMPZ = 'V', then on exit !> !> (final value of Z) = (initial value of Z)*U !> !> where U is the orthogonal matrix in (*) (regard- !> less of the value of JOB.) !> !> If INFO > 0 and COMPZ = 'I', then on exit !> (final value of Z) = U !> where U is the orthogonal matrix in (*) (regard- !> less of the value of JOB.) !> !> If INFO > 0 and COMPZ = 'N', then Z is not !> accessed. !>
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Karen Braman and Ralph Byers, Department of Mathematics, University of Kansas, USA
Further Details:
!> !> Default values supplied by !> ILAENV(ISPEC,'SHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK). !> It is suggested that these defaults be adjusted in order !> to attain best performance in each particular !> computational environment. !> !> ISPEC=12: The SLAHQR vs SLAQR0 crossover point. !> Default: 75. (Must be at least 11.) !> !> ISPEC=13: Recommended deflation window size. !> This depends on ILO, IHI and NS. NS is the !> number of simultaneous shifts returned !> by ILAENV(ISPEC=15). (See ISPEC=15 below.) !> The default for (IHI-ILO+1) <= 500 is NS. !> The default for (IHI-ILO+1) > 500 is 3*NS/2. !> !> ISPEC=14: Nibble crossover point. (See IPARMQ for !> details.) Default: 14% of deflation window !> size. !> !> ISPEC=15: Number of simultaneous shifts in a multishift !> QR iteration. !> !> If IHI-ILO+1 is ... !> !> greater than ...but less ... the !> or equal to ... than default is !> !> 1 30 NS = 2(+) !> 30 60 NS = 4(+) !> 60 150 NS = 10(+) !> 150 590 NS = ** !> 590 3000 NS = 64 !> 3000 6000 NS = 128 !> 6000 infinity NS = 256 !> !> (+) By default some or all matrices of this order !> are passed to the implicit double shift routine !> SLAHQR and this parameter is ignored. See !> ISPEC=12 above and comments in IPARMQ for !> details. !> !> (**) The asterisks (**) indicate an ad-hoc !> function of N increasing from 10 to 64. !> !> ISPEC=16: Select structured matrix multiply. !> If the number of simultaneous shifts (specified !> by ISPEC=15) is less than 14, then the default !> for ISPEC=16 is 0. Otherwise the default for !> ISPEC=16 is 2. !>
References:
K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part I: Maintaining Well Focused Shifts, and Level 3 Performance, SIAM Journal of Matrix Analysis, volume 23, pages 929--947, 2002.

K. Braman, R. Byers and R. Mathias, The Multi-Shift QR Algorithm Part II: Aggressive Early Deflation, SIAM Journal of Matrix Analysis, volume 23, pages 948–973, 2002.

Definition at line 312 of file shseqr.f.

314*
315* -- LAPACK computational routine --
316* -- LAPACK is a software package provided by Univ. of Tennessee, --
317* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
318*
319* .. Scalar Arguments ..
320 INTEGER IHI, ILO, INFO, LDH, LDZ, LWORK, N
321 CHARACTER COMPZ, JOB
322* ..
323* .. Array Arguments ..
324 REAL H( LDH, * ), WI( * ), WORK( * ), WR( * ),
325 $ Z( LDZ, * )
326* ..
327*
328* =====================================================================
329*
330* .. Parameters ..
331*
332* ==== Matrices of order NTINY or smaller must be processed by
333* . SLAHQR because of insufficient subdiagonal scratch space.
334* . (This is a hard limit.) ====
335 INTEGER NTINY
336 parameter( ntiny = 15 )
337*
338* ==== NL allocates some local workspace to help small matrices
339* . through a rare SLAHQR failure. NL > NTINY = 15 is
340* . required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
341* . mended. (The default value of NMIN is 75.) Using NL = 49
342* . allows up to six simultaneous shifts and a 16-by-16
343* . deflation window. ====
344 INTEGER NL
345 parameter( nl = 49 )
346 REAL ZERO, ONE
347 parameter( zero = 0.0e0, one = 1.0e0 )
348* ..
349* .. Local Arrays ..
350 REAL HL( NL, NL ), WORKL( NL )
351* ..
352* .. Local Scalars ..
353 INTEGER I, KBOT, NMIN
354 LOGICAL INITZ, LQUERY, WANTT, WANTZ
355* ..
356* .. External Functions ..
357 INTEGER ILAENV
358 LOGICAL LSAME
359 REAL SROUNDUP_LWORK
360 EXTERNAL ilaenv, lsame, sroundup_lwork
361* ..
362* .. External Subroutines ..
363 EXTERNAL slacpy, slahqr, slaqr0, slaset,
364 $ xerbla
365* ..
366* .. Intrinsic Functions ..
367 INTRINSIC max, min, real
368* ..
369* .. Executable Statements ..
370*
371* ==== Decode and check the input parameters. ====
372*
373 wantt = lsame( job, 'S' )
374 initz = lsame( compz, 'I' )
375 wantz = initz .OR. lsame( compz, 'V' )
376 work( 1 ) = sroundup_lwork( max( 1, n ) )
377 lquery = lwork.EQ.-1
378*
379 info = 0
380 IF( .NOT.lsame( job, 'E' ) .AND. .NOT.wantt ) THEN
381 info = -1
382 ELSE IF( .NOT.lsame( compz, 'N' ) .AND. .NOT.wantz ) THEN
383 info = -2
384 ELSE IF( n.LT.0 ) THEN
385 info = -3
386 ELSE IF( ilo.LT.1 .OR. ilo.GT.max( 1, n ) ) THEN
387 info = -4
388 ELSE IF( ihi.LT.min( ilo, n ) .OR. ihi.GT.n ) THEN
389 info = -5
390 ELSE IF( ldh.LT.max( 1, n ) ) THEN
391 info = -7
392 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.max( 1, n ) ) ) THEN
393 info = -11
394 ELSE IF( lwork.LT.max( 1, n ) .AND. .NOT.lquery ) THEN
395 info = -13
396 END IF
397*
398 IF( info.NE.0 ) THEN
399*
400* ==== Quick return in case of invalid argument. ====
401*
402 CALL xerbla( 'SHSEQR', -info )
403 RETURN
404*
405 ELSE IF( n.EQ.0 ) THEN
406*
407* ==== Quick return in case N = 0; nothing to do. ====
408*
409 RETURN
410*
411 ELSE IF( lquery ) THEN
412*
413* ==== Quick return in case of a workspace query ====
414*
415 CALL slaqr0( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, ilo,
416 $ ihi, z, ldz, work, lwork, info )
417* ==== Ensure reported workspace size is backward-compatible with
418* . previous LAPACK versions. ====
419 work( 1 ) = max( real( max( 1, n ) ), work( 1 ) )
420 RETURN
421*
422 ELSE
423*
424* ==== copy eigenvalues isolated by SGEBAL ====
425*
426 DO 10 i = 1, ilo - 1
427 wr( i ) = h( i, i )
428 wi( i ) = zero
429 10 CONTINUE
430 DO 20 i = ihi + 1, n
431 wr( i ) = h( i, i )
432 wi( i ) = zero
433 20 CONTINUE
434*
435* ==== Initialize Z, if requested ====
436*
437 IF( initz )
438 $ CALL slaset( 'A', n, n, zero, one, z, ldz )
439*
440* ==== Quick return if possible ====
441*
442 IF( ilo.EQ.ihi ) THEN
443 wr( ilo ) = h( ilo, ilo )
444 wi( ilo ) = zero
445 RETURN
446 END IF
447*
448* ==== SLAHQR/SLAQR0 crossover point ====
449*
450 nmin = ilaenv( 12, 'SHSEQR', job( : 1 ) // compz( : 1 ), n,
451 $ ilo, ihi, lwork )
452 nmin = max( ntiny, nmin )
453*
454* ==== SLAQR0 for big matrices; SLAHQR for small ones ====
455*
456 IF( n.GT.nmin ) THEN
457 CALL slaqr0( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
458 $ ilo,
459 $ ihi, z, ldz, work, lwork, info )
460 ELSE
461*
462* ==== Small matrix ====
463*
464 CALL slahqr( wantt, wantz, n, ilo, ihi, h, ldh, wr, wi,
465 $ ilo,
466 $ ihi, z, ldz, info )
467*
468 IF( info.GT.0 ) THEN
469*
470* ==== A rare SLAHQR failure! SLAQR0 sometimes succeeds
471* . when SLAHQR fails. ====
472*
473 kbot = info
474*
475 IF( n.GE.nl ) THEN
476*
477* ==== Larger matrices have enough subdiagonal scratch
478* . space to call SLAQR0 directly. ====
479*
480 CALL slaqr0( wantt, wantz, n, ilo, kbot, h, ldh,
481 $ wr,
482 $ wi, ilo, ihi, z, ldz, work, lwork, info )
483*
484 ELSE
485*
486* ==== Tiny matrices don't have enough subdiagonal
487* . scratch space to benefit from SLAQR0. Hence,
488* . tiny matrices must be copied into a larger
489* . array before calling SLAQR0. ====
490*
491 CALL slacpy( 'A', n, n, h, ldh, hl, nl )
492 hl( n+1, n ) = zero
493 CALL slaset( 'A', nl, nl-n, zero, zero, hl( 1,
494 $ n+1 ),
495 $ nl )
496 CALL slaqr0( wantt, wantz, nl, ilo, kbot, hl, nl,
497 $ wr,
498 $ wi, ilo, ihi, z, ldz, workl, nl, info )
499 IF( wantt .OR. info.NE.0 )
500 $ CALL slacpy( 'A', n, n, hl, nl, h, ldh )
501 END IF
502 END IF
503 END IF
504*
505* ==== Clear out the trash, if necessary. ====
506*
507 IF( ( wantt .OR. info.NE.0 ) .AND. n.GT.2 )
508 $ CALL slaset( 'L', n-2, n-2, zero, zero, h( 3, 1 ), ldh )
509*
510* ==== Ensure reported workspace size is backward-compatible with
511* . previous LAPACK versions. ====
512*
513 work( 1 ) = max( real( max( 1, n ) ), work( 1 ) )
514 END IF
515*
516* ==== End of SHSEQR ====
517*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine slacpy(uplo, m, n, a, lda, b, ldb)
SLACPY copies all or part of one two-dimensional array to another.
Definition slacpy.f:101
subroutine slahqr(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, info)
SLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix,...
Definition slahqr.f:205
subroutine slaqr0(wantt, wantz, n, ilo, ihi, h, ldh, wr, wi, iloz, ihiz, z, ldz, work, lwork, info)
SLAQR0 computes the eigenvalues of a Hessenberg matrix, and optionally the matrices from the Schur de...
Definition slaqr0.f:254
subroutine slaset(uplo, m, n, alpha, beta, a, lda)
SLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition slaset.f:108
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: