LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dggsvd3()

subroutine dggsvd3 ( character jobu,
character jobv,
character jobq,
integer m,
integer n,
integer p,
integer k,
integer l,
double precision, dimension( lda, * ) a,
integer lda,
double precision, dimension( ldb, * ) b,
integer ldb,
double precision, dimension( * ) alpha,
double precision, dimension( * ) beta,
double precision, dimension( ldu, * ) u,
integer ldu,
double precision, dimension( ldv, * ) v,
integer ldv,
double precision, dimension( ldq, * ) q,
integer ldq,
double precision, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer info )

DGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices

Download DGGSVD3 + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> DGGSVD3 computes the generalized singular value decomposition (GSVD)
!> of an M-by-N real matrix A and P-by-N real matrix B:
!>
!>       U**T*A*Q = D1*( 0 R ),    V**T*B*Q = D2*( 0 R )
!>
!> where U, V and Q are orthogonal matrices.
!> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T,
!> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and
!> D2 are M-by-(K+L) and P-by-(K+L)  matrices and of the
!> following structures, respectively:
!>
!> If M-K-L >= 0,
!>
!>                     K  L
!>        D1 =     K ( I  0 )
!>                 L ( 0  C )
!>             M-K-L ( 0  0 )
!>
!>                   K  L
!>        D2 =   L ( 0  S )
!>             P-L ( 0  0 )
!>
!>                 N-K-L  K    L
!>   ( 0 R ) = K (  0   R11  R12 )
!>             L (  0    0   R22 )
!>
!> where
!>
!>   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
!>   S = diag( BETA(K+1),  ... , BETA(K+L) ),
!>   C**2 + S**2 = I.
!>
!>   R is stored in A(1:K+L,N-K-L+1:N) on exit.
!>
!> If M-K-L < 0,
!>
!>                   K M-K K+L-M
!>        D1 =   K ( I  0    0   )
!>             M-K ( 0  C    0   )
!>
!>                     K M-K K+L-M
!>        D2 =   M-K ( 0  S    0  )
!>             K+L-M ( 0  0    I  )
!>               P-L ( 0  0    0  )
!>
!>                    N-K-L  K   M-K  K+L-M
!>   ( 0 R ) =     K ( 0    R11  R12  R13  )
!>               M-K ( 0     0   R22  R23  )
!>             K+L-M ( 0     0    0   R33  )
!>
!> where
!>
!>   C = diag( ALPHA(K+1), ... , ALPHA(M) ),
!>   S = diag( BETA(K+1),  ... , BETA(M) ),
!>   C**2 + S**2 = I.
!>
!>   (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored
!>   ( 0  R22 R23 )
!>   in B(M-K+1:L,N+M-K-L+1:N) on exit.
!>
!> The routine computes C, S, R, and optionally the orthogonal
!> transformation matrices U, V and Q.
!>
!> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of
!> A and B implicitly gives the SVD of A*inv(B):
!>                      A*inv(B) = U*(D1*inv(D2))*V**T.
!> If ( A**T,B**T)**T  has orthonormal columns, then the GSVD of A and B is
!> also equal to the CS decomposition of A and B. Furthermore, the GSVD
!> can be used to derive the solution of the eigenvalue problem:
!>                      A**T*A x = lambda* B**T*B x.
!> In some literature, the GSVD of A and B is presented in the form
!>                  U**T*A*X = ( 0 D1 ),   V**T*B*X = ( 0 D2 )
!> where U and V are orthogonal and X is nonsingular, D1 and D2 are
!> ``diagonal''.  The former GSVD form can be converted to the latter
!> form by taking the nonsingular matrix X as
!>
!>                      X = Q*( I   0    )
!>                            ( 0 inv(R) ).
!> 
Parameters
[in]JOBU
!>          JOBU is CHARACTER*1
!>          = 'U':  Orthogonal matrix U is computed;
!>          = 'N':  U is not computed.
!> 
[in]JOBV
!>          JOBV is CHARACTER*1
!>          = 'V':  Orthogonal matrix V is computed;
!>          = 'N':  V is not computed.
!> 
[in]JOBQ
!>          JOBQ is CHARACTER*1
!>          = 'Q':  Orthogonal matrix Q is computed;
!>          = 'N':  Q is not computed.
!> 
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrices A and B.  N >= 0.
!> 
[in]P
!>          P is INTEGER
!>          The number of rows of the matrix B.  P >= 0.
!> 
[out]K
!>          K is INTEGER
!> 
[out]L
!>          L is INTEGER
!>
!>          On exit, K and L specify the dimension of the subblocks
!>          described in Purpose.
!>          K + L = effective numerical rank of (A**T,B**T)**T.
!> 
[in,out]A
!>          A is DOUBLE PRECISION array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, A contains the triangular matrix R, or part of R.
!>          See Purpose for details.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A. LDA >= max(1,M).
!> 
[in,out]B
!>          B is DOUBLE PRECISION array, dimension (LDB,N)
!>          On entry, the P-by-N matrix B.
!>          On exit, B contains the triangular matrix R if M-K-L < 0.
!>          See Purpose for details.
!> 
[in]LDB
!>          LDB is INTEGER
!>          The leading dimension of the array B. LDB >= max(1,P).
!> 
[out]ALPHA
!>          ALPHA is DOUBLE PRECISION array, dimension (N)
!> 
[out]BETA
!>          BETA is DOUBLE PRECISION array, dimension (N)
!>
!>          On exit, ALPHA and BETA contain the generalized singular
!>          value pairs of A and B;
!>            ALPHA(1:K) = 1,
!>            BETA(1:K)  = 0,
!>          and if M-K-L >= 0,
!>            ALPHA(K+1:K+L) = C,
!>            BETA(K+1:K+L)  = S,
!>          or if M-K-L < 0,
!>            ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0
!>            BETA(K+1:M) =S, BETA(M+1:K+L) =1
!>          and
!>            ALPHA(K+L+1:N) = 0
!>            BETA(K+L+1:N)  = 0
!> 
[out]U
!>          U is DOUBLE PRECISION array, dimension (LDU,M)
!>          If JOBU = 'U', U contains the M-by-M orthogonal matrix U.
!>          If JOBU = 'N', U is not referenced.
!> 
[in]LDU
!>          LDU is INTEGER
!>          The leading dimension of the array U. LDU >= max(1,M) if
!>          JOBU = 'U'; LDU >= 1 otherwise.
!> 
[out]V
!>          V is DOUBLE PRECISION array, dimension (LDV,P)
!>          If JOBV = 'V', V contains the P-by-P orthogonal matrix V.
!>          If JOBV = 'N', V is not referenced.
!> 
[in]LDV
!>          LDV is INTEGER
!>          The leading dimension of the array V. LDV >= max(1,P) if
!>          JOBV = 'V'; LDV >= 1 otherwise.
!> 
[out]Q
!>          Q is DOUBLE PRECISION array, dimension (LDQ,N)
!>          If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q.
!>          If JOBQ = 'N', Q is not referenced.
!> 
[in]LDQ
!>          LDQ is INTEGER
!>          The leading dimension of the array Q. LDQ >= max(1,N) if
!>          JOBQ = 'Q'; LDQ >= 1 otherwise.
!> 
[out]WORK
!>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= 1.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the optimal size of the WORK array, returns
!>          this value as the first entry of the WORK array, and no error
!>          message related to LWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (N)
!>          On exit, IWORK stores the sorting information. More
!>          precisely, the following loop will sort ALPHA
!>             for I = K+1, min(M,K+L)
!>                 swap ALPHA(I) and ALPHA(IWORK(I))
!>             endfor
!>          such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit.
!>          < 0:  if INFO = -i, the i-th argument had an illegal value.
!>          > 0:  if INFO = 1, the Jacobi-type procedure failed to
!>                converge.  For further details, see subroutine DTGSJA.
!> 
Internal Parameters:
!>  TOLA    DOUBLE PRECISION
!>  TOLB    DOUBLE PRECISION
!>          TOLA and TOLB are the thresholds to determine the effective
!>          rank of (A**T,B**T)**T. Generally, they are set to
!>                   TOLA = MAX(M,N)*norm(A)*MACHEPS,
!>                   TOLB = MAX(P,N)*norm(B)*MACHEPS.
!>          The size of TOLA and TOLB may affect the size of backward
!>          errors of the decomposition.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA
Further Details:
DGGSVD3 replaces the deprecated subroutine DGGSVD.

Definition at line 344 of file dggsvd3.f.

347*
348* -- LAPACK driver routine --
349* -- LAPACK is a software package provided by Univ. of Tennessee, --
350* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
351*
352* .. Scalar Arguments ..
353 CHARACTER JOBQ, JOBU, JOBV
354 INTEGER INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M, N, P,
355 $ LWORK
356* ..
357* .. Array Arguments ..
358 INTEGER IWORK( * )
359 DOUBLE PRECISION A( LDA, * ), ALPHA( * ), B( LDB, * ),
360 $ BETA( * ), Q( LDQ, * ), U( LDU, * ),
361 $ V( LDV, * ), WORK( * )
362* ..
363*
364* =====================================================================
365*
366* .. Local Scalars ..
367 LOGICAL WANTQ, WANTU, WANTV, LQUERY
368 INTEGER I, IBND, ISUB, J, NCYCLE, LWKOPT
369 DOUBLE PRECISION ANORM, BNORM, SMAX, TEMP, TOLA, TOLB, ULP, UNFL
370* ..
371* .. External Functions ..
372 LOGICAL LSAME
373 DOUBLE PRECISION DLAMCH, DLANGE
374 EXTERNAL lsame, dlamch, dlange
375* ..
376* .. External Subroutines ..
377 EXTERNAL dcopy, dggsvp3, dtgsja, xerbla
378* ..
379* .. Intrinsic Functions ..
380 INTRINSIC max, min
381* ..
382* .. Executable Statements ..
383*
384* Decode and test the input parameters
385*
386 wantu = lsame( jobu, 'U' )
387 wantv = lsame( jobv, 'V' )
388 wantq = lsame( jobq, 'Q' )
389 lquery = ( lwork.EQ.-1 )
390 lwkopt = 1
391*
392* Test the input arguments
393*
394 info = 0
395 IF( .NOT.( wantu .OR. lsame( jobu, 'N' ) ) ) THEN
396 info = -1
397 ELSE IF( .NOT.( wantv .OR. lsame( jobv, 'N' ) ) ) THEN
398 info = -2
399 ELSE IF( .NOT.( wantq .OR. lsame( jobq, 'N' ) ) ) THEN
400 info = -3
401 ELSE IF( m.LT.0 ) THEN
402 info = -4
403 ELSE IF( n.LT.0 ) THEN
404 info = -5
405 ELSE IF( p.LT.0 ) THEN
406 info = -6
407 ELSE IF( lda.LT.max( 1, m ) ) THEN
408 info = -10
409 ELSE IF( ldb.LT.max( 1, p ) ) THEN
410 info = -12
411 ELSE IF( ldu.LT.1 .OR. ( wantu .AND. ldu.LT.m ) ) THEN
412 info = -16
413 ELSE IF( ldv.LT.1 .OR. ( wantv .AND. ldv.LT.p ) ) THEN
414 info = -18
415 ELSE IF( ldq.LT.1 .OR. ( wantq .AND. ldq.LT.n ) ) THEN
416 info = -20
417 ELSE IF( lwork.LT.1 .AND. .NOT.lquery ) THEN
418 info = -24
419 END IF
420*
421* Compute workspace
422*
423 IF( info.EQ.0 ) THEN
424 CALL dggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb,
425 $ tola,
426 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, work,
427 $ work, -1, info )
428 lwkopt = n + int( work( 1 ) )
429 lwkopt = max( 2*n, lwkopt )
430 lwkopt = max( 1, lwkopt )
431 work( 1 ) = dble( lwkopt )
432 END IF
433*
434 IF( info.NE.0 ) THEN
435 CALL xerbla( 'DGGSVD3', -info )
436 RETURN
437 END IF
438 IF( lquery ) THEN
439 RETURN
440 ENDIF
441*
442* Compute the Frobenius norm of matrices A and B
443*
444 anorm = dlange( '1', m, n, a, lda, work )
445 bnorm = dlange( '1', p, n, b, ldb, work )
446*
447* Get machine precision and set up threshold for determining
448* the effective numerical rank of the matrices A and B.
449*
450 ulp = dlamch( 'Precision' )
451 unfl = dlamch( 'Safe Minimum' )
452 tola = max( m, n )*max( anorm, unfl )*ulp
453 tolb = max( p, n )*max( bnorm, unfl )*ulp
454*
455* Preprocessing
456*
457 CALL dggsvp3( jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola,
458 $ tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, work,
459 $ work( n+1 ), lwork-n, info )
460*
461* Compute the GSVD of two upper "triangular" matrices
462*
463 CALL dtgsja( jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb,
464 $ tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq,
465 $ work, ncycle, info )
466*
467* Sort the singular values and store the pivot indices in IWORK
468* Copy ALPHA to WORK, then sort ALPHA in WORK
469*
470 CALL dcopy( n, alpha, 1, work, 1 )
471 ibnd = min( l, m-k )
472 DO 20 i = 1, ibnd
473*
474* Scan for largest ALPHA(K+I)
475*
476 isub = i
477 smax = work( k+i )
478 DO 10 j = i + 1, ibnd
479 temp = work( k+j )
480 IF( temp.GT.smax ) THEN
481 isub = j
482 smax = temp
483 END IF
484 10 CONTINUE
485 IF( isub.NE.i ) THEN
486 work( k+isub ) = work( k+i )
487 work( k+i ) = smax
488 iwork( k+i ) = k + isub
489 ELSE
490 iwork( k+i ) = k + i
491 END IF
492 20 CONTINUE
493*
494 work( 1 ) = dble( lwkopt )
495 RETURN
496*
497* End of DGGSVD3
498*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dcopy(n, dx, incx, dy, incy)
DCOPY
Definition dcopy.f:82
subroutine dggsvp3(jobu, jobv, jobq, m, p, n, a, lda, b, ldb, tola, tolb, k, l, u, ldu, v, ldv, q, ldq, iwork, tau, work, lwork, info)
DGGSVP3
Definition dggsvp3.f:270
double precision function dlamch(cmach)
DLAMCH
Definition dlamch.f:69
double precision function dlange(norm, m, n, a, lda, work)
DLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
Definition dlange.f:112
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dtgsja(jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
DTGSJA
Definition dtgsja.f:376
Here is the call graph for this function:
Here is the caller graph for this function: