LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dggsvd3 | ( | character | jobu, |
character | jobv, | ||
character | jobq, | ||
integer | m, | ||
integer | n, | ||
integer | p, | ||
integer | k, | ||
integer | l, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldb, * ) | b, | ||
integer | ldb, | ||
double precision, dimension( * ) | alpha, | ||
double precision, dimension( * ) | beta, | ||
double precision, dimension( ldu, * ) | u, | ||
integer | ldu, | ||
double precision, dimension( ldv, * ) | v, | ||
integer | ldv, | ||
double precision, dimension( ldq, * ) | q, | ||
integer | ldq, | ||
double precision, dimension( * ) | work, | ||
integer | lwork, | ||
integer, dimension( * ) | iwork, | ||
integer | info ) |
DGGSVD3 computes the singular value decomposition (SVD) for OTHER matrices
Download DGGSVD3 + dependencies [TGZ] [ZIP] [TXT]
!> !> DGGSVD3 computes the generalized singular value decomposition (GSVD) !> of an M-by-N real matrix A and P-by-N real matrix B: !> !> U**T*A*Q = D1*( 0 R ), V**T*B*Q = D2*( 0 R ) !> !> where U, V and Q are orthogonal matrices. !> Let K+L = the effective numerical rank of the matrix (A**T,B**T)**T, !> then R is a K+L-by-K+L nonsingular upper triangular matrix, D1 and !> D2 are M-by-(K+L) and P-by-(K+L) matrices and of the !> following structures, respectively: !> !> If M-K-L >= 0, !> !> K L !> D1 = K ( I 0 ) !> L ( 0 C ) !> M-K-L ( 0 0 ) !> !> K L !> D2 = L ( 0 S ) !> P-L ( 0 0 ) !> !> N-K-L K L !> ( 0 R ) = K ( 0 R11 R12 ) !> L ( 0 0 R22 ) !> !> where !> !> C = diag( ALPHA(K+1), ... , ALPHA(K+L) ), !> S = diag( BETA(K+1), ... , BETA(K+L) ), !> C**2 + S**2 = I. !> !> R is stored in A(1:K+L,N-K-L+1:N) on exit. !> !> If M-K-L < 0, !> !> K M-K K+L-M !> D1 = K ( I 0 0 ) !> M-K ( 0 C 0 ) !> !> K M-K K+L-M !> D2 = M-K ( 0 S 0 ) !> K+L-M ( 0 0 I ) !> P-L ( 0 0 0 ) !> !> N-K-L K M-K K+L-M !> ( 0 R ) = K ( 0 R11 R12 R13 ) !> M-K ( 0 0 R22 R23 ) !> K+L-M ( 0 0 0 R33 ) !> !> where !> !> C = diag( ALPHA(K+1), ... , ALPHA(M) ), !> S = diag( BETA(K+1), ... , BETA(M) ), !> C**2 + S**2 = I. !> !> (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is stored !> ( 0 R22 R23 ) !> in B(M-K+1:L,N+M-K-L+1:N) on exit. !> !> The routine computes C, S, R, and optionally the orthogonal !> transformation matrices U, V and Q. !> !> In particular, if B is an N-by-N nonsingular matrix, then the GSVD of !> A and B implicitly gives the SVD of A*inv(B): !> A*inv(B) = U*(D1*inv(D2))*V**T. !> If ( A**T,B**T)**T has orthonormal columns, then the GSVD of A and B is !> also equal to the CS decomposition of A and B. Furthermore, the GSVD !> can be used to derive the solution of the eigenvalue problem: !> A**T*A x = lambda* B**T*B x. !> In some literature, the GSVD of A and B is presented in the form !> U**T*A*X = ( 0 D1 ), V**T*B*X = ( 0 D2 ) !> where U and V are orthogonal and X is nonsingular, D1 and D2 are !> ``diagonal''. The former GSVD form can be converted to the latter !> form by taking the nonsingular matrix X as !> !> X = Q*( I 0 ) !> ( 0 inv(R) ). !>
[in] | JOBU | !> JOBU is CHARACTER*1 !> = 'U': Orthogonal matrix U is computed; !> = 'N': U is not computed. !> |
[in] | JOBV | !> JOBV is CHARACTER*1 !> = 'V': Orthogonal matrix V is computed; !> = 'N': V is not computed. !> |
[in] | JOBQ | !> JOBQ is CHARACTER*1 !> = 'Q': Orthogonal matrix Q is computed; !> = 'N': Q is not computed. !> |
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >= 0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrices A and B. N >= 0. !> |
[in] | P | !> P is INTEGER !> The number of rows of the matrix B. P >= 0. !> |
[out] | K | !> K is INTEGER !> |
[out] | L | !> L is INTEGER !> !> On exit, K and L specify the dimension of the subblocks !> described in Purpose. !> K + L = effective numerical rank of (A**T,B**T)**T. !> |
[in,out] | A | !> A is DOUBLE PRECISION array, dimension (LDA,N) !> On entry, the M-by-N matrix A. !> On exit, A contains the triangular matrix R, or part of R. !> See Purpose for details. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. LDA >= max(1,M). !> |
[in,out] | B | !> B is DOUBLE PRECISION array, dimension (LDB,N) !> On entry, the P-by-N matrix B. !> On exit, B contains the triangular matrix R if M-K-L < 0. !> See Purpose for details. !> |
[in] | LDB | !> LDB is INTEGER !> The leading dimension of the array B. LDB >= max(1,P). !> |
[out] | ALPHA | !> ALPHA is DOUBLE PRECISION array, dimension (N) !> |
[out] | BETA | !> BETA is DOUBLE PRECISION array, dimension (N) !> !> On exit, ALPHA and BETA contain the generalized singular !> value pairs of A and B; !> ALPHA(1:K) = 1, !> BETA(1:K) = 0, !> and if M-K-L >= 0, !> ALPHA(K+1:K+L) = C, !> BETA(K+1:K+L) = S, !> or if M-K-L < 0, !> ALPHA(K+1:M)=C, ALPHA(M+1:K+L)=0 !> BETA(K+1:M) =S, BETA(M+1:K+L) =1 !> and !> ALPHA(K+L+1:N) = 0 !> BETA(K+L+1:N) = 0 !> |
[out] | U | !> U is DOUBLE PRECISION array, dimension (LDU,M) !> If JOBU = 'U', U contains the M-by-M orthogonal matrix U. !> If JOBU = 'N', U is not referenced. !> |
[in] | LDU | !> LDU is INTEGER !> The leading dimension of the array U. LDU >= max(1,M) if !> JOBU = 'U'; LDU >= 1 otherwise. !> |
[out] | V | !> V is DOUBLE PRECISION array, dimension (LDV,P) !> If JOBV = 'V', V contains the P-by-P orthogonal matrix V. !> If JOBV = 'N', V is not referenced. !> |
[in] | LDV | !> LDV is INTEGER !> The leading dimension of the array V. LDV >= max(1,P) if !> JOBV = 'V'; LDV >= 1 otherwise. !> |
[out] | Q | !> Q is DOUBLE PRECISION array, dimension (LDQ,N) !> If JOBQ = 'Q', Q contains the N-by-N orthogonal matrix Q. !> If JOBQ = 'N', Q is not referenced. !> |
[in] | LDQ | !> LDQ is INTEGER !> The leading dimension of the array Q. LDQ >= max(1,N) if !> JOBQ = 'Q'; LDQ >= 1 otherwise. !> |
[out] | WORK | !> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the optimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. LWORK >= 1. !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the optimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | IWORK | !> IWORK is INTEGER array, dimension (N) !> On exit, IWORK stores the sorting information. More !> precisely, the following loop will sort ALPHA !> for I = K+1, min(M,K+L) !> swap ALPHA(I) and ALPHA(IWORK(I)) !> endfor !> such that ALPHA(1) >= ALPHA(2) >= ... >= ALPHA(N). !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit. !> < 0: if INFO = -i, the i-th argument had an illegal value. !> > 0: if INFO = 1, the Jacobi-type procedure failed to !> converge. For further details, see subroutine DTGSJA. !> |
!> TOLA DOUBLE PRECISION !> TOLB DOUBLE PRECISION !> TOLA and TOLB are the thresholds to determine the effective !> rank of (A**T,B**T)**T. Generally, they are set to !> TOLA = MAX(M,N)*norm(A)*MACHEPS, !> TOLB = MAX(P,N)*norm(B)*MACHEPS. !> The size of TOLA and TOLB may affect the size of backward !> errors of the decomposition. !>
Definition at line 344 of file dggsvd3.f.