LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches
dlamtsqr.f
Go to the documentation of this file.
1*> \brief \b DLAMTSQR
2*
3* Definition:
4* ===========
5*
6* SUBROUTINE DLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
7* $ LDT, C, LDC, WORK, LWORK, INFO )
8*
9*
10* .. Scalar Arguments ..
11* CHARACTER SIDE, TRANS
12* INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
13* ..
14* .. Array Arguments ..
15* DOUBLE A( LDA, * ), WORK( * ), C(LDC, * ),
16* $ T( LDT, * )
17*> \par Purpose:
18* =============
19*>
20*> \verbatim
21*>
22*> DLAMTSQR overwrites the general real M-by-N matrix C with
23*>
24*>
25*> SIDE = 'L' SIDE = 'R'
26*> TRANS = 'N': Q * C C * Q
27*> TRANS = 'T': Q**T * C C * Q**T
28*> where Q is a real orthogonal matrix defined as the product
29*> of blocked elementary reflectors computed by tall skinny
30*> QR factorization (DLATSQR)
31*> \endverbatim
32*
33* Arguments:
34* ==========
35*
36*> \param[in] SIDE
37*> \verbatim
38*> SIDE is CHARACTER*1
39*> = 'L': apply Q or Q**T from the Left;
40*> = 'R': apply Q or Q**T from the Right.
41*> \endverbatim
42*>
43*> \param[in] TRANS
44*> \verbatim
45*> TRANS is CHARACTER*1
46*> = 'N': No transpose, apply Q;
47*> = 'T': Transpose, apply Q**T.
48*> \endverbatim
49*>
50*> \param[in] M
51*> \verbatim
52*> M is INTEGER
53*> The number of rows of the matrix A. M >=0.
54*> \endverbatim
55*>
56*> \param[in] N
57*> \verbatim
58*> N is INTEGER
59*> The number of columns of the matrix C. N >= 0.
60*> \endverbatim
61*>
62*> \param[in] K
63*> \verbatim
64*> K is INTEGER
65*> The number of elementary reflectors whose product defines
66*> the matrix Q. M >= K >= 0;
67*>
68*> \endverbatim
69*>
70*> \param[in] MB
71*> \verbatim
72*> MB is INTEGER
73*> The block size to be used in the blocked QR.
74*> MB > N. (must be the same as DLATSQR)
75*> \endverbatim
76*>
77*> \param[in] NB
78*> \verbatim
79*> NB is INTEGER
80*> The column block size to be used in the blocked QR.
81*> N >= NB >= 1.
82*> \endverbatim
83*>
84*> \param[in] A
85*> \verbatim
86*> A is DOUBLE PRECISION array, dimension (LDA,K)
87*> The i-th column must contain the vector which defines the
88*> blockedelementary reflector H(i), for i = 1,2,...,k, as
89*> returned by DLATSQR in the first k columns of
90*> its array argument A.
91*> \endverbatim
92*>
93*> \param[in] LDA
94*> \verbatim
95*> LDA is INTEGER
96*> The leading dimension of the array A.
97*> If SIDE = 'L', LDA >= max(1,M);
98*> if SIDE = 'R', LDA >= max(1,N).
99*> \endverbatim
100*>
101*> \param[in] T
102*> \verbatim
103*> T is DOUBLE PRECISION array, dimension
104*> ( N * Number of blocks(CEIL(M-K/MB-K)),
105*> The blocked upper triangular block reflectors stored in compact form
106*> as a sequence of upper triangular blocks. See below
107*> for further details.
108*> \endverbatim
109*>
110*> \param[in] LDT
111*> \verbatim
112*> LDT is INTEGER
113*> The leading dimension of the array T. LDT >= NB.
114*> \endverbatim
115*>
116*> \param[in,out] C
117*> \verbatim
118*> C is DOUBLE PRECISION array, dimension (LDC,N)
119*> On entry, the M-by-N matrix C.
120*> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
121*> \endverbatim
122*>
123*> \param[in] LDC
124*> \verbatim
125*> LDC is INTEGER
126*> The leading dimension of the array C. LDC >= max(1,M).
127*> \endverbatim
128*>
129*> \param[out] WORK
130*> \verbatim
131*> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))
132*> On exit, if INFO = 0, WORK(1) returns the minimal LWORK.
133*> \endverbatim
134*>
135*> \param[in] LWORK
136*> \verbatim
137*> LWORK is INTEGER
138*> The dimension of the array WORK.
139*> If MIN(M,N,K) = 0, LWORK >= 1.
140*> If SIDE = 'L', LWORK >= max(1,N*NB).
141*> If SIDE = 'R', LWORK >= max(1,MB*NB).
142*>
143*> If LWORK = -1, then a workspace query is assumed; the routine
144*> only calculates the minimal size of the WORK array, returns
145*> this value as the first entry of the WORK array, and no error
146*> message related to LWORK is issued by XERBLA.
147*> \endverbatim
148*>
149*> \param[out] INFO
150*> \verbatim
151*> INFO is INTEGER
152*> = 0: successful exit
153*> < 0: if INFO = -i, the i-th argument had an illegal value
154*> \endverbatim
155*
156* Authors:
157* ========
158*
159*> \author Univ. of Tennessee
160*> \author Univ. of California Berkeley
161*> \author Univ. of Colorado Denver
162*> \author NAG Ltd.
163*
164*> \par Further Details:
165* =====================
166*>
167*> \verbatim
168*> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations,
169*> representing Q as a product of other orthogonal matrices
170*> Q = Q(1) * Q(2) * . . . * Q(k)
171*> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A:
172*> Q(1) zeros out the subdiagonal entries of rows 1:MB of A
173*> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A
174*> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A
175*> . . .
176*>
177*> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors
178*> stored under the diagonal of rows 1:MB of A, and by upper triangular
179*> block reflectors, stored in array T(1:LDT,1:N).
180*> For more information see Further Details in GEQRT.
181*>
182*> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors
183*> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular
184*> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N).
185*> The last Q(k) may use fewer rows.
186*> For more information see Further Details in TPQRT.
187*>
188*> For more details of the overall algorithm, see the description of
189*> Sequential TSQR in Section 2.2 of [1].
190*>
191*> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
192*> J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
193*> SIAM J. Sci. Comput, vol. 34, no. 1, 2012
194*> \endverbatim
195*>
196*> \ingroup lamtsqr
197*>
198* =====================================================================
199 SUBROUTINE dlamtsqr( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T,
200 $ LDT, C, LDC, WORK, LWORK, INFO )
201*
202* -- LAPACK computational routine --
203* -- LAPACK is a software package provided by Univ. of Tennessee, --
204* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
205*
206* .. Scalar Arguments ..
207 CHARACTER SIDE, TRANS
208 INTEGER INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC
209* ..
210* .. Array Arguments ..
211 DOUBLE PRECISION A( LDA, * ), WORK( * ), C( LDC, * ),
212 $ t( ldt, * )
213* ..
214*
215* =====================================================================
216*
217* ..
218* .. Local Scalars ..
219 LOGICAL LEFT, RIGHT, TRAN, NOTRAN, LQUERY
220 INTEGER I, II, KK, LW, CTR, Q, MINMNK, LWMIN
221* ..
222* .. External Functions ..
223 LOGICAL LSAME
224 EXTERNAL lsame
225* .. External Subroutines ..
226 EXTERNAL dgemqrt, dtpmqrt, xerbla
227* ..
228* .. Executable Statements ..
229*
230* Test the input arguments
231*
232 info = 0
233 lquery = ( lwork.EQ.-1 )
234 notran = lsame( trans, 'N' )
235 tran = lsame( trans, 'T' )
236 left = lsame( side, 'L' )
237 right = lsame( side, 'R' )
238 IF( left ) THEN
239 lw = n * nb
240 q = m
241 ELSE
242 lw = mb * nb
243 q = n
244 END IF
245*
246 minmnk = min( m, n, k )
247 IF( minmnk.EQ.0 ) THEN
248 lwmin = 1
249 ELSE
250 lwmin = max( 1, lw )
251 END IF
252*
253 IF( .NOT.left .AND. .NOT.right ) THEN
254 info = -1
255 ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
256 info = -2
257 ELSE IF( m.LT.k ) THEN
258 info = -3
259 ELSE IF( n.LT.0 ) THEN
260 info = -4
261 ELSE IF( k.LT.0 ) THEN
262 info = -5
263 ELSE IF( k.LT.nb .OR. nb.LT.1 ) THEN
264 info = -7
265 ELSE IF( lda.LT.max( 1, q ) ) THEN
266 info = -9
267 ELSE IF( ldt.LT.max( 1, nb ) ) THEN
268 info = -11
269 ELSE IF( ldc.LT.max( 1, m ) ) THEN
270 info = -13
271 ELSE IF( lwork.LT.lwmin .AND. (.NOT.lquery) ) THEN
272 info = -15
273 END IF
274*
275 IF( info.EQ.0 ) THEN
276 work( 1 ) = lwmin
277 END IF
278*
279 IF( info.NE.0 ) THEN
280 CALL xerbla( 'DLAMTSQR', -info )
281 RETURN
282 ELSE IF( lquery ) THEN
283 RETURN
284 END IF
285*
286* Quick return if possible
287*
288 IF( minmnk.EQ.0 ) THEN
289 RETURN
290 END IF
291*
292* Determine the block size if it is tall skinny or short and wide
293*
294 IF((mb.LE.k).OR.(mb.GE.max(m,n,k))) THEN
295 CALL dgemqrt( side, trans, m, n, k, nb, a, lda,
296 $ t, ldt, c, ldc, work, info )
297 RETURN
298 END IF
299*
300 IF(left.AND.notran) THEN
301*
302* Multiply Q to the last block of C
303*
304 kk = mod((m-k),(mb-k))
305 ctr = (m-k)/(mb-k)
306 IF (kk.GT.0) THEN
307 ii=m-kk+1
308 CALL dtpmqrt('L','N',kk , n, k, 0, nb, a(ii,1), lda,
309 $ t(1,ctr*k+1),ldt , c(1,1), ldc,
310 $ c(ii,1), ldc, work, info )
311 ELSE
312 ii=m+1
313 END IF
314*
315 DO i=ii-(mb-k),mb+1,-(mb-k)
316*
317* Multiply Q to the current block of C (I:I+MB,1:N)
318*
319 ctr = ctr - 1
320 CALL dtpmqrt('L','N',mb-k , n, k, 0,nb, a(i,1), lda,
321 $ t(1,ctr*k+1),ldt, c(1,1), ldc,
322 $ c(i,1), ldc, work, info )
323*
324 END DO
325*
326* Multiply Q to the first block of C (1:MB,1:N)
327*
328 CALL dgemqrt('L','N',mb , n, k, nb, a(1,1), lda, t
329 $ ,ldt ,c(1,1), ldc, work, info )
330*
331 ELSE IF (left.AND.tran) THEN
332*
333* Multiply Q to the first block of C
334*
335 kk = mod((m-k),(mb-k))
336 ii=m-kk+1
337 ctr = 1
338 CALL dgemqrt('L','T',mb , n, k, nb, a(1,1), lda, t
339 $ ,ldt ,c(1,1), ldc, work, info )
340*
341 DO i=mb+1,ii-mb+k,(mb-k)
342*
343* Multiply Q to the current block of C (I:I+MB,1:N)
344*
345 CALL dtpmqrt('L','T',mb-k , n, k, 0,nb, a(i,1), lda,
346 $ t(1,ctr * k + 1),ldt, c(1,1), ldc,
347 $ c(i,1), ldc, work, info )
348 ctr = ctr + 1
349*
350 END DO
351 IF(ii.LE.m) THEN
352*
353* Multiply Q to the last block of C
354*
355 CALL dtpmqrt('L','T',kk , n, k, 0,nb, a(ii,1), lda,
356 $ t(1,ctr * k + 1), ldt, c(1,1), ldc,
357 $ c(ii,1), ldc, work, info )
358*
359 END IF
360*
361 ELSE IF(right.AND.tran) THEN
362*
363* Multiply Q to the last block of C
364*
365 kk = mod((n-k),(mb-k))
366 ctr = (n-k)/(mb-k)
367 IF (kk.GT.0) THEN
368 ii=n-kk+1
369 CALL dtpmqrt('R','T',m , kk, k, 0, nb, a(ii,1), lda,
370 $ t(1,ctr*k+1), ldt, c(1,1), ldc,
371 $ c(1,ii), ldc, work, info )
372 ELSE
373 ii=n+1
374 END IF
375*
376 DO i=ii-(mb-k),mb+1,-(mb-k)
377*
378* Multiply Q to the current block of C (1:M,I:I+MB)
379*
380 ctr = ctr - 1
381 CALL dtpmqrt('R','T',m , mb-k, k, 0,nb, a(i,1), lda,
382 $ t(1,ctr*k+1), ldt, c(1,1), ldc,
383 $ c(1,i), ldc, work, info )
384*
385 END DO
386*
387* Multiply Q to the first block of C (1:M,1:MB)
388*
389 CALL dgemqrt('R','T',m , mb, k, nb, a(1,1), lda, t
390 $ ,ldt ,c(1,1), ldc, work, info )
391*
392 ELSE IF (right.AND.notran) THEN
393*
394* Multiply Q to the first block of C
395*
396 kk = mod((n-k),(mb-k))
397 ii=n-kk+1
398 ctr = 1
399 CALL dgemqrt('R','N', m, mb , k, nb, a(1,1), lda, t
400 $ ,ldt ,c(1,1), ldc, work, info )
401*
402 DO i=mb+1,ii-mb+k,(mb-k)
403*
404* Multiply Q to the current block of C (1:M,I:I+MB)
405*
406 CALL dtpmqrt('R','N', m, mb-k, k, 0,nb, a(i,1), lda,
407 $ t(1, ctr * k + 1),ldt, c(1,1), ldc,
408 $ c(1,i), ldc, work, info )
409 ctr = ctr + 1
410*
411 END DO
412 IF(ii.LE.n) THEN
413*
414* Multiply Q to the last block of C
415*
416 CALL dtpmqrt('R','N', m, kk , k, 0,nb, a(ii,1), lda,
417 $ t(1, ctr * k + 1),ldt, c(1,1), ldc,
418 $ c(1,ii), ldc, work, info )
419*
420 END IF
421*
422 END IF
423*
424 work( 1 ) = lwmin
425*
426 RETURN
427*
428* End of DLAMTSQR
429*
430 END
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine dgemqrt(side, trans, m, n, k, nb, v, ldv, t, ldt, c, ldc, work, info)
DGEMQRT
Definition dgemqrt.f:166
subroutine dlamtsqr(side, trans, m, n, k, mb, nb, a, lda, t, ldt, c, ldc, work, lwork, info)
DLAMTSQR
Definition dlamtsqr.f:201
subroutine dtpmqrt(side, trans, m, n, k, l, nb, v, ldv, t, ldt, a, lda, b, ldb, work, info)
DTPMQRT
Definition dtpmqrt.f:215