LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ dtpmqrt()

subroutine dtpmqrt ( character  side,
character  trans,
integer  m,
integer  n,
integer  k,
integer  l,
integer  nb,
double precision, dimension( ldv, * )  v,
integer  ldv,
double precision, dimension( ldt, * )  t,
integer  ldt,
double precision, dimension( lda, * )  a,
integer  lda,
double precision, dimension( ldb, * )  b,
integer  ldb,
double precision, dimension( * )  work,
integer  info 
)

DTPMQRT

Download DTPMQRT + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 DTPMQRT applies a real orthogonal matrix Q obtained from a
 "triangular-pentagonal" real block reflector H to a general
 real matrix C, which consists of two blocks A and B.
Parameters
[in]SIDE
          SIDE is CHARACTER*1
          = 'L': apply Q or Q**T from the Left;
          = 'R': apply Q or Q**T from the Right.
[in]TRANS
          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q;
          = 'T':  Transpose, apply Q**T.
[in]M
          M is INTEGER
          The number of rows of the matrix B. M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix B. N >= 0.
[in]K
          K is INTEGER
          The number of elementary reflectors whose product defines
          the matrix Q.
[in]L
          L is INTEGER
          The order of the trapezoidal part of V.
          K >= L >= 0.  See Further Details.
[in]NB
          NB is INTEGER
          The block size used for the storage of T.  K >= NB >= 1.
          This must be the same value of NB used to generate T
          in CTPQRT.
[in]V
          V is DOUBLE PRECISION array, dimension (LDV,K)
          The i-th column must contain the vector which defines the
          elementary reflector H(i), for i = 1,2,...,k, as returned by
          CTPQRT in B.  See Further Details.
[in]LDV
          LDV is INTEGER
          The leading dimension of the array V.
          If SIDE = 'L', LDV >= max(1,M);
          if SIDE = 'R', LDV >= max(1,N).
[in]T
          T is DOUBLE PRECISION array, dimension (LDT,K)
          The upper triangular factors of the block reflectors
          as returned by CTPQRT, stored as a NB-by-K matrix.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= NB.
[in,out]A
          A is DOUBLE PRECISION array, dimension
          (LDA,N) if SIDE = 'L' or
          (LDA,K) if SIDE = 'R'
          On entry, the K-by-N or M-by-K matrix A.
          On exit, A is overwritten by the corresponding block of
          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.
          If SIDE = 'L', LDC >= max(1,K);
          If SIDE = 'R', LDC >= max(1,M).
[in,out]B
          B is DOUBLE PRECISION array, dimension (LDB,N)
          On entry, the M-by-N matrix B.
          On exit, B is overwritten by the corresponding block of
          Q*C or Q**T*C or C*Q or C*Q**T.  See Further Details.
[in]LDB
          LDB is INTEGER
          The leading dimension of the array B.
          LDB >= max(1,M).
[out]WORK
          WORK is DOUBLE PRECISION array. The dimension of WORK is
           N*NB if SIDE = 'L', or  M*NB if SIDE = 'R'.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
  The columns of the pentagonal matrix V contain the elementary reflectors
  H(1), H(2), ..., H(K); V is composed of a rectangular block V1 and a
  trapezoidal block V2:

        V = [V1]
            [V2].

  The size of the trapezoidal block V2 is determined by the parameter L,
  where 0 <= L <= K; V2 is upper trapezoidal, consisting of the first L
  rows of a K-by-K upper triangular matrix.  If L=K, V2 is upper triangular;
  if L=0, there is no trapezoidal block, hence V = V1 is rectangular.

  If SIDE = 'L':  C = [A]  where A is K-by-N,  B is M-by-N and V is M-by-K.
                      [B]

  If SIDE = 'R':  C = [A B]  where A is M-by-K, B is M-by-N and V is N-by-K.

  The real orthogonal matrix Q is formed from V and T.

  If TRANS='N' and SIDE='L', C is on exit replaced with Q * C.

  If TRANS='T' and SIDE='L', C is on exit replaced with Q**T * C.

  If TRANS='N' and SIDE='R', C is on exit replaced with C * Q.

  If TRANS='T' and SIDE='R', C is on exit replaced with C * Q**T.

Definition at line 214 of file dtpmqrt.f.

216*
217* -- LAPACK computational routine --
218* -- LAPACK is a software package provided by Univ. of Tennessee, --
219* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
220*
221* .. Scalar Arguments ..
222 CHARACTER SIDE, TRANS
223 INTEGER INFO, K, LDV, LDA, LDB, M, N, L, NB, LDT
224* ..
225* .. Array Arguments ..
226 DOUBLE PRECISION V( LDV, * ), A( LDA, * ), B( LDB, * ),
227 $ T( LDT, * ), WORK( * )
228* ..
229*
230* =====================================================================
231*
232* ..
233* .. Local Scalars ..
234 LOGICAL LEFT, RIGHT, TRAN, NOTRAN
235 INTEGER I, IB, MB, LB, KF, LDAQ, LDVQ
236* ..
237* .. External Functions ..
238 LOGICAL LSAME
239 EXTERNAL lsame
240* ..
241* .. External Subroutines ..
242 EXTERNAL dtprfb, xerbla
243* ..
244* .. Intrinsic Functions ..
245 INTRINSIC max, min
246* ..
247* .. Executable Statements ..
248*
249* .. Test the input arguments ..
250*
251 info = 0
252 left = lsame( side, 'L' )
253 right = lsame( side, 'R' )
254 tran = lsame( trans, 'T' )
255 notran = lsame( trans, 'N' )
256*
257 IF ( left ) THEN
258 ldvq = max( 1, m )
259 ldaq = max( 1, k )
260 ELSE IF ( right ) THEN
261 ldvq = max( 1, n )
262 ldaq = max( 1, m )
263 END IF
264 IF( .NOT.left .AND. .NOT.right ) THEN
265 info = -1
266 ELSE IF( .NOT.tran .AND. .NOT.notran ) THEN
267 info = -2
268 ELSE IF( m.LT.0 ) THEN
269 info = -3
270 ELSE IF( n.LT.0 ) THEN
271 info = -4
272 ELSE IF( k.LT.0 ) THEN
273 info = -5
274 ELSE IF( l.LT.0 .OR. l.GT.k ) THEN
275 info = -6
276 ELSE IF( nb.LT.1 .OR. (nb.GT.k .AND. k.GT.0) ) THEN
277 info = -7
278 ELSE IF( ldv.LT.ldvq ) THEN
279 info = -9
280 ELSE IF( ldt.LT.nb ) THEN
281 info = -11
282 ELSE IF( lda.LT.ldaq ) THEN
283 info = -13
284 ELSE IF( ldb.LT.max( 1, m ) ) THEN
285 info = -15
286 END IF
287*
288 IF( info.NE.0 ) THEN
289 CALL xerbla( 'DTPMQRT', -info )
290 RETURN
291 END IF
292*
293* .. Quick return if possible ..
294*
295 IF( m.EQ.0 .OR. n.EQ.0 .OR. k.EQ.0 ) RETURN
296*
297 IF( left .AND. tran ) THEN
298*
299 DO i = 1, k, nb
300 ib = min( nb, k-i+1 )
301 mb = min( m-l+i+ib-1, m )
302 IF( i.GE.l ) THEN
303 lb = 0
304 ELSE
305 lb = mb-m+l-i+1
306 END IF
307 CALL dtprfb( 'L', 'T', 'F', 'C', mb, n, ib, lb,
308 $ v( 1, i ), ldv, t( 1, i ), ldt,
309 $ a( i, 1 ), lda, b, ldb, work, ib )
310 END DO
311*
312 ELSE IF( right .AND. notran ) THEN
313*
314 DO i = 1, k, nb
315 ib = min( nb, k-i+1 )
316 mb = min( n-l+i+ib-1, n )
317 IF( i.GE.l ) THEN
318 lb = 0
319 ELSE
320 lb = mb-n+l-i+1
321 END IF
322 CALL dtprfb( 'R', 'N', 'F', 'C', m, mb, ib, lb,
323 $ v( 1, i ), ldv, t( 1, i ), ldt,
324 $ a( 1, i ), lda, b, ldb, work, m )
325 END DO
326*
327 ELSE IF( left .AND. notran ) THEN
328*
329 kf = ((k-1)/nb)*nb+1
330 DO i = kf, 1, -nb
331 ib = min( nb, k-i+1 )
332 mb = min( m-l+i+ib-1, m )
333 IF( i.GE.l ) THEN
334 lb = 0
335 ELSE
336 lb = mb-m+l-i+1
337 END IF
338 CALL dtprfb( 'L', 'N', 'F', 'C', mb, n, ib, lb,
339 $ v( 1, i ), ldv, t( 1, i ), ldt,
340 $ a( i, 1 ), lda, b, ldb, work, ib )
341 END DO
342*
343 ELSE IF( right .AND. tran ) THEN
344*
345 kf = ((k-1)/nb)*nb+1
346 DO i = kf, 1, -nb
347 ib = min( nb, k-i+1 )
348 mb = min( n-l+i+ib-1, n )
349 IF( i.GE.l ) THEN
350 lb = 0
351 ELSE
352 lb = mb-n+l-i+1
353 END IF
354 CALL dtprfb( 'R', 'T', 'F', 'C', m, mb, ib, lb,
355 $ v( 1, i ), ldv, t( 1, i ), ldt,
356 $ a( 1, i ), lda, b, ldb, work, m )
357 END DO
358*
359 END IF
360*
361 RETURN
362*
363* End of DTPMQRT
364*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine dtprfb(side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
DTPRFB applies a real "triangular-pentagonal" block reflector to a real matrix, which is composed of ...
Definition dtprfb.f:251
Here is the call graph for this function:
Here is the caller graph for this function: