LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
|
subroutine dlamtsqr | ( | character | side, |
character | trans, | ||
integer | m, | ||
integer | n, | ||
integer | k, | ||
integer | mb, | ||
integer | nb, | ||
double precision, dimension( lda, * ) | a, | ||
integer | lda, | ||
double precision, dimension( ldt, * ) | t, | ||
integer | ldt, | ||
double precision, dimension( ldc, * ) | c, | ||
integer | ldc, | ||
double precision, dimension( * ) | work, | ||
integer | lwork, | ||
integer | info ) |
DLAMTSQR
!> !> DLAMTSQR overwrites the general real M-by-N matrix C with !> !> !> SIDE = 'L' SIDE = 'R' !> TRANS = 'N': Q * C C * Q !> TRANS = 'T': Q**T * C C * Q**T !> where Q is a real orthogonal matrix defined as the product !> of blocked elementary reflectors computed by tall skinny !> QR factorization (DLATSQR) !>
[in] | SIDE | !> SIDE is CHARACTER*1 !> = 'L': apply Q or Q**T from the Left; !> = 'R': apply Q or Q**T from the Right. !> |
[in] | TRANS | !> TRANS is CHARACTER*1 !> = 'N': No transpose, apply Q; !> = 'T': Transpose, apply Q**T. !> |
[in] | M | !> M is INTEGER !> The number of rows of the matrix A. M >=0. !> |
[in] | N | !> N is INTEGER !> The number of columns of the matrix C. N >= 0. !> |
[in] | K | !> K is INTEGER !> The number of elementary reflectors whose product defines !> the matrix Q. M >= K >= 0; !> !> |
[in] | MB | !> MB is INTEGER !> The block size to be used in the blocked QR. !> MB > N. (must be the same as DLATSQR) !> |
[in] | NB | !> NB is INTEGER !> The column block size to be used in the blocked QR. !> N >= NB >= 1. !> |
[in] | A | !> A is DOUBLE PRECISION array, dimension (LDA,K) !> The i-th column must contain the vector which defines the !> blockedelementary reflector H(i), for i = 1,2,...,k, as !> returned by DLATSQR in the first k columns of !> its array argument A. !> |
[in] | LDA | !> LDA is INTEGER !> The leading dimension of the array A. !> If SIDE = 'L', LDA >= max(1,M); !> if SIDE = 'R', LDA >= max(1,N). !> |
[in] | T | !> T is DOUBLE PRECISION array, dimension !> ( N * Number of blocks(CEIL(M-K/MB-K)), !> The blocked upper triangular block reflectors stored in compact form !> as a sequence of upper triangular blocks. See below !> for further details. !> |
[in] | LDT | !> LDT is INTEGER !> The leading dimension of the array T. LDT >= NB. !> |
[in,out] | C | !> C is DOUBLE PRECISION array, dimension (LDC,N) !> On entry, the M-by-N matrix C. !> On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. !> |
[in] | LDC | !> LDC is INTEGER !> The leading dimension of the array C. LDC >= max(1,M). !> |
[out] | WORK | !> (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) !> On exit, if INFO = 0, WORK(1) returns the minimal LWORK. !> |
[in] | LWORK | !> LWORK is INTEGER !> The dimension of the array WORK. !> If MIN(M,N,K) = 0, LWORK >= 1. !> If SIDE = 'L', LWORK >= max(1,N*NB). !> If SIDE = 'R', LWORK >= max(1,MB*NB). !> !> If LWORK = -1, then a workspace query is assumed; the routine !> only calculates the minimal size of the WORK array, returns !> this value as the first entry of the WORK array, and no error !> message related to LWORK is issued by XERBLA. !> |
[out] | INFO | !> INFO is INTEGER !> = 0: successful exit !> < 0: if INFO = -i, the i-th argument had an illegal value !> |
!> Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations, !> representing Q as a product of other orthogonal matrices !> Q = Q(1) * Q(2) * . . . * Q(k) !> where each Q(i) zeros out subdiagonal entries of a block of MB rows of A: !> Q(1) zeros out the subdiagonal entries of rows 1:MB of A !> Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A !> Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A !> . . . !> !> Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors !> stored under the diagonal of rows 1:MB of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,1:N). !> For more information see Further Details in GEQRT. !> !> Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors !> stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular !> block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N). !> The last Q(k) may use fewer rows. !> For more information see Further Details in TPQRT. !> !> For more details of the overall algorithm, see the description of !> Sequential TSQR in Section 2.2 of [1]. !> !> [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,” !> J. Demmel, L. Grigori, M. Hoemmen, J. Langou, !> SIAM J. Sci. Comput, vol. 34, no. 1, 2012 !>
Definition at line 199 of file dlamtsqr.f.