LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sgelq()

subroutine sgelq ( integer m,
integer n,
real, dimension( lda, * ) a,
integer lda,
real, dimension( * ) t,
integer tsize,
real, dimension( * ) work,
integer lwork,
integer info )

SGELQ

Purpose:
!>
!> SGELQ computes an LQ factorization of a real M-by-N matrix A:
!>
!>    A = ( L 0 ) *  Q
!>
!> where:
!>
!>    Q is a N-by-N orthogonal matrix;
!>    L is a lower-triangular M-by-M matrix;
!>    0 is a M-by-(N-M) zero matrix, if M < N.
!>
!> 
Parameters
[in]M
!>          M is INTEGER
!>          The number of rows of the matrix A.  M >= 0.
!> 
[in]N
!>          N is INTEGER
!>          The number of columns of the matrix A.  N >= 0.
!> 
[in,out]A
!>          A is REAL array, dimension (LDA,N)
!>          On entry, the M-by-N matrix A.
!>          On exit, the elements on and below the diagonal of the array
!>          contain the M-by-min(M,N) lower trapezoidal matrix L
!>          (L is lower triangular if M <= N);
!>          the elements above the diagonal are used to store part of the 
!>          data structure to represent Q.
!> 
[in]LDA
!>          LDA is INTEGER
!>          The leading dimension of the array A.  LDA >= max(1,M).
!> 
[out]T
!>          T is REAL array, dimension (MAX(5,TSIZE))
!>          On exit, if INFO = 0, T(1) returns optimal (or either minimal 
!>          or optimal, if query is assumed) TSIZE. See TSIZE for details.
!>          Remaining T contains part of the data structure used to represent Q.
!>          If one wants to apply or construct Q, then one needs to keep T 
!>          (in addition to A) and pass it to further subroutines.
!> 
[in]TSIZE
!>          TSIZE is INTEGER
!>          If TSIZE >= 5, the dimension of the array T.
!>          If TSIZE = -1 or -2, then a workspace query is assumed. The routine
!>          only calculates the sizes of the T and WORK arrays, returns these
!>          values as the first entries of the T and WORK arrays, and no error
!>          message related to T or WORK is issued by XERBLA.
!>          If TSIZE = -1, the routine calculates optimal size of T for the 
!>          optimum performance and returns this value in T(1).
!>          If TSIZE = -2, the routine calculates minimal size of T and 
!>          returns this value in T(1).
!> 
[out]WORK
!>          (workspace) REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) contains optimal (or either minimal
!>          or optimal, if query was assumed) LWORK.
!>          See LWORK for details.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK. LWORK >= 1.
!>          If LWORK = -1 or -2, then a workspace query is assumed. The routine
!>          only calculates the sizes of the T and WORK arrays, returns these
!>          values as the first entries of the T and WORK arrays, and no error
!>          message related to T or WORK is issued by XERBLA.
!>          If LWORK = -1, the routine calculates optimal size of WORK for the
!>          optimal performance and returns this value in WORK(1).
!>          If LWORK = -2, the routine calculates minimal size of WORK and 
!>          returns this value in WORK(1).
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details
!>
!> The goal of the interface is to give maximum freedom to the developers for
!> creating any LQ factorization algorithm they wish. The triangular 
!> (trapezoidal) L has to be stored in the lower part of A. The lower part of A
!> and the array T can be used to store any relevant information for applying or
!> constructing the Q factor. The WORK array can safely be discarded after exit.
!>
!> Caution: One should not expect the sizes of T and WORK to be the same from one 
!> LAPACK implementation to the other, or even from one execution to the other.
!> A workspace query (for T and WORK) is needed at each execution. However, 
!> for a given execution, the size of T and WORK are fixed and will not change 
!> from one query to the next.
!>
!> 
Further Details particular to this LAPACK implementation:
!>
!> These details are particular for this LAPACK implementation. Users should not 
!> take them for granted. These details may change in the future, and are not likely
!> true for another LAPACK implementation. These details are relevant if one wants
!> to try to understand the code. They are not part of the interface.
!>
!> In this version,
!>
!>          T(2): row block size (MB)
!>          T(3): column block size (NB)
!>          T(6:TSIZE): data structure needed for Q, computed by
!>                           SLASWLQ or SGELQT
!>
!>  Depending on the matrix dimensions M and N, and row and column
!>  block sizes MB and NB returned by ILAENV, SGELQ will use either
!>  SLASWLQ (if the matrix is short-and-wide) or SGELQT to compute
!>  the LQ factorization.
!> 

Definition at line 172 of file sgelq.f.

174*
175* -- LAPACK computational routine --
176* -- LAPACK is a software package provided by Univ. of Tennessee, --
177* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
178*
179* .. Scalar Arguments ..
180 INTEGER INFO, LDA, M, N, TSIZE, LWORK
181* ..
182* .. Array Arguments ..
183 REAL A( LDA, * ), T( * ), WORK( * )
184* ..
185*
186* =====================================================================
187*
188* ..
189* .. Local Scalars ..
190 LOGICAL LQUERY, LMINWS, MINT, MINW
191 INTEGER MB, NB, MINTSZ, NBLCKS, LWMIN, LWOPT, LWREQ
192* ..
193* .. External Functions ..
194 LOGICAL LSAME
195 REAL SROUNDUP_LWORK
196 EXTERNAL lsame, sroundup_lwork
197* ..
198* .. External Subroutines ..
199 EXTERNAL sgelqt, slaswlq, xerbla
200* ..
201* .. Intrinsic Functions ..
202 INTRINSIC max, min, mod
203* ..
204* .. External Functions ..
205 INTEGER ILAENV
206 EXTERNAL ilaenv
207* ..
208* .. Executable statements ..
209*
210* Test the input arguments
211*
212 info = 0
213*
214 lquery = ( tsize.EQ.-1 .OR. tsize.EQ.-2 .OR.
215 $ lwork.EQ.-1 .OR. lwork.EQ.-2 )
216*
217 mint = .false.
218 minw = .false.
219 IF( tsize.EQ.-2 .OR. lwork.EQ.-2 ) THEN
220 IF( tsize.NE.-1 ) mint = .true.
221 IF( lwork.NE.-1 ) minw = .true.
222 END IF
223*
224* Determine the block size
225*
226 IF( min( m, n ).GT.0 ) THEN
227 mb = ilaenv( 1, 'SGELQ ', ' ', m, n, 1, -1 )
228 nb = ilaenv( 1, 'SGELQ ', ' ', m, n, 2, -1 )
229 ELSE
230 mb = 1
231 nb = n
232 END IF
233 IF( mb.GT.min( m, n ) .OR. mb.LT.1 ) mb = 1
234 IF( nb.GT.n .OR. nb.LE.m ) nb = n
235 mintsz = m + 5
236 IF ( nb.GT.m .AND. n.GT.m ) THEN
237 IF( mod( n - m, nb - m ).EQ.0 ) THEN
238 nblcks = ( n - m ) / ( nb - m )
239 ELSE
240 nblcks = ( n - m ) / ( nb - m ) + 1
241 END IF
242 ELSE
243 nblcks = 1
244 END IF
245*
246* Determine if the workspace size satisfies minimal size
247*
248 IF( ( n.LE.m ) .OR. ( nb.LE.m ) .OR. ( nb.GE.n ) ) THEN
249 lwmin = max( 1, n )
250 lwopt = max( 1, mb*n )
251 ELSE
252 lwmin = max( 1, m )
253 lwopt = max( 1, mb*m )
254 END IF
255 lminws = .false.
256 IF( ( tsize.LT.max( 1, mb*m*nblcks + 5 ) .OR. lwork.LT.lwopt )
257 $ .AND. ( lwork.GE.lwmin ) .AND. ( tsize.GE.mintsz )
258 $ .AND. ( .NOT.lquery ) ) THEN
259 IF( tsize.LT.max( 1, mb*m*nblcks + 5 ) ) THEN
260 lminws = .true.
261 mb = 1
262 nb = n
263 END IF
264 IF( lwork.LT.lwopt ) THEN
265 lminws = .true.
266 mb = 1
267 END IF
268 END IF
269 IF( ( n.LE.m ) .OR. ( nb.LE.m ) .OR. ( nb.GE.n ) ) THEN
270 lwreq = max( 1, mb*n )
271 ELSE
272 lwreq = max( 1, mb*m )
273 END IF
274*
275 IF( m.LT.0 ) THEN
276 info = -1
277 ELSE IF( n.LT.0 ) THEN
278 info = -2
279 ELSE IF( lda.LT.max( 1, m ) ) THEN
280 info = -4
281 ELSE IF( tsize.LT.max( 1, mb*m*nblcks + 5 )
282 $ .AND. ( .NOT.lquery ) .AND. ( .NOT.lminws ) ) THEN
283 info = -6
284 ELSE IF( ( lwork.LT.lwreq ) .and .( .NOT.lquery )
285 $ .AND. ( .NOT.lminws ) ) THEN
286 info = -8
287 END IF
288*
289 IF( info.EQ.0 ) THEN
290 IF( mint ) THEN
291 t( 1 ) = real( mintsz )
292 ELSE
293 t( 1 ) = real( mb*m*nblcks + 5 )
294 END IF
295 t( 2 ) = real( mb )
296 t( 3 ) = real( nb )
297 IF( minw ) THEN
298 work( 1 ) = sroundup_lwork( lwmin )
299 ELSE
300 work( 1 ) = sroundup_lwork( lwreq )
301 END IF
302 END IF
303 IF( info.NE.0 ) THEN
304 CALL xerbla( 'SGELQ', -info )
305 RETURN
306 ELSE IF( lquery ) THEN
307 RETURN
308 END IF
309*
310* Quick return if possible
311*
312 IF( min( m, n ).EQ.0 ) THEN
313 RETURN
314 END IF
315*
316* The LQ Decomposition
317*
318 IF( ( n.LE.m ) .OR. ( nb.LE.m ) .OR. ( nb.GE.n ) ) THEN
319 CALL sgelqt( m, n, mb, a, lda, t( 6 ), mb, work, info )
320 ELSE
321 CALL slaswlq( m, n, mb, nb, a, lda, t( 6 ), mb, work,
322 $ lwork, info )
323 END IF
324*
325 work( 1 ) = sroundup_lwork( lwreq )
326 RETURN
327*
328* End of SGELQ
329*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgelqt(m, n, mb, a, lda, t, ldt, work, info)
SGELQT
Definition sgelqt.f:124
integer function ilaenv(ispec, name, opts, n1, n2, n3, n4)
ILAENV
Definition ilaenv.f:160
subroutine slaswlq(m, n, mb, nb, a, lda, t, ldt, work, lwork, info)
SLASWLQ
Definition slaswlq.f:169
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
Here is the call graph for this function:
Here is the caller graph for this function: