LAPACK 3.12.0
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ slaswlq()

subroutine slaswlq ( integer  m,
integer  n,
integer  mb,
integer  nb,
real, dimension( lda, * )  a,
integer  lda,
real, dimension( ldt, *)  t,
integer  ldt,
real, dimension( * )  work,
integer  lwork,
integer  info 
)

SLASWLQ

Purpose:
 SLASWLQ computes a blocked Tall-Skinny LQ factorization of
 a real M-by-N matrix A for M <= N:

    A = ( L 0 ) *  Q,

 where:

    Q is a n-by-N orthogonal matrix, stored on exit in an implicit
    form in the elements above the diagonal of the array A and in
    the elements of the array T;
    L is a lower-triangular M-by-M matrix stored on exit in
    the elements on and below the diagonal of the array A.
    0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= M >= 0.
[in]MB
          MB is INTEGER
          The row block size to be used in the blocked QR.
          M >= MB >= 1
[in]NB
          NB is INTEGER
          The column block size to be used in the blocked QR.
          NB > 0.
[in,out]A
          A is REAL array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the elements on and below the diagonal
          of the array contain the N-by-N lower triangular matrix L;
          the elements above the diagonal represent Q by the rows
          of blocked V (see Further Details).
[in]LDA
          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).
[out]T
          T is REAL array,
          dimension (LDT, N * Number_of_row_blocks)
          where Number_of_row_blocks = CEIL((N-M)/(NB-M))
          The blocked upper triangular block reflectors stored in compact form
          as a sequence of upper triangular blocks.
          See Further Details below.
[in]LDT
          LDT is INTEGER
          The leading dimension of the array T.  LDT >= MB.
[out]WORK
         (workspace) REAL array, dimension (MAX(1,LWORK))
[in]LWORK
          LWORK is INTEGER
          The dimension of the array WORK.  LWORK >= MB * M.
          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.
[out]INFO
          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
 Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
 representing Q as a product of other orthogonal matrices
   Q = Q(1) * Q(2) * . . . * Q(k)
 where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
   Q(1) zeros out the upper diagonal entries of rows 1:NB of A
   Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
   Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
   . . .

 Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
 stored under the diagonal of rows 1:MB of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,1:N).
 For more information see Further Details in GELQT.

 Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
 stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
 block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
 The last Q(k) may use fewer rows.
 For more information see Further Details in TPQRT.

 For more details of the overall algorithm, see the description of
 Sequential TSQR in Section 2.2 of [1].

 [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
     J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
     SIAM J. Sci. Comput, vol. 34, no. 1, 2012

Definition at line 165 of file slaswlq.f.

167*
168* -- LAPACK computational routine --
169* -- LAPACK is a software package provided by Univ. of Tennessee, --
170* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd. --
171*
172* .. Scalar Arguments ..
173 INTEGER INFO, LDA, M, N, MB, NB, LWORK, LDT
174* ..
175* .. Array Arguments ..
176 REAL A( LDA, * ), WORK( * ), T( LDT, *)
177* ..
178*
179* =====================================================================
180*
181* ..
182* .. Local Scalars ..
183 LOGICAL LQUERY
184 INTEGER I, II, KK, CTR
185* ..
186* .. EXTERNAL FUNCTIONS ..
187 LOGICAL LSAME
188 REAL SROUNDUP_LWORK
189 EXTERNAL lsame, sroundup_lwork
190* .. EXTERNAL SUBROUTINES ..
191 EXTERNAL sgelqt, sgeqrt, stplqt, stpqrt, xerbla
192* .. INTRINSIC FUNCTIONS ..
193 INTRINSIC max, min, mod
194* ..
195* .. EXECUTABLE STATEMENTS ..
196*
197* TEST THE INPUT ARGUMENTS
198*
199 info = 0
200*
201 lquery = ( lwork.EQ.-1 )
202*
203 IF( m.LT.0 ) THEN
204 info = -1
205 ELSE IF( n.LT.0 .OR. n.LT.m ) THEN
206 info = -2
207 ELSE IF( mb.LT.1 .OR. ( mb.GT.m .AND. m.GT.0 )) THEN
208 info = -3
209 ELSE IF( nb.LE.0 ) THEN
210 info = -4
211 ELSE IF( lda.LT.max( 1, m ) ) THEN
212 info = -6
213 ELSE IF( ldt.LT.mb ) THEN
214 info = -8
215 ELSE IF( ( lwork.LT.m*mb) .AND. (.NOT.lquery) ) THEN
216 info = -10
217 END IF
218 IF( info.EQ.0) THEN
219 work(1) = mb*m
220 END IF
221*
222 IF( info.NE.0 ) THEN
223 CALL xerbla( 'SLASWLQ', -info )
224 RETURN
225 ELSE IF (lquery) THEN
226 RETURN
227 END IF
228*
229* Quick return if possible
230*
231 IF( min(m,n).EQ.0 ) THEN
232 RETURN
233 END IF
234*
235* The LQ Decomposition
236*
237 IF((m.GE.n).OR.(nb.LE.m).OR.(nb.GE.n)) THEN
238 CALL sgelqt( m, n, mb, a, lda, t, ldt, work, info)
239 RETURN
240 END IF
241*
242 kk = mod((n-m),(nb-m))
243 ii=n-kk+1
244*
245* Compute the LQ factorization of the first block A(1:M,1:NB)
246*
247 CALL sgelqt( m, nb, mb, a(1,1), lda, t, ldt, work, info)
248 ctr = 1
249*
250 DO i = nb+1, ii-nb+m , (nb-m)
251*
252* Compute the QR factorization of the current block A(1:M,I:I+NB-M)
253*
254 CALL stplqt( m, nb-m, 0, mb, a(1,1), lda, a( 1, i ),
255 $ lda, t(1, ctr * m + 1),
256 $ ldt, work, info )
257 ctr = ctr + 1
258 END DO
259*
260* Compute the QR factorization of the last block A(1:M,II:N)
261*
262 IF (ii.LE.n) THEN
263 CALL stplqt( m, kk, 0, mb, a(1,1), lda, a( 1, ii ),
264 $ lda, t(1, ctr * m + 1), ldt,
265 $ work, info )
266 END IF
267*
268 work( 1 ) = sroundup_lwork(m * mb)
269 RETURN
270*
271* End of SLASWLQ
272*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sgelqt(m, n, mb, a, lda, t, ldt, work, info)
SGELQT
Definition sgelqt.f:124
subroutine sgeqrt(m, n, nb, a, lda, t, ldt, work, info)
SGEQRT
Definition sgeqrt.f:141
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine stplqt(m, n, l, mb, a, lda, b, ldb, t, ldt, work, info)
STPLQT
Definition stplqt.f:189
subroutine stpqrt(m, n, l, nb, a, lda, b, ldb, t, ldt, work, info)
STPQRT
Definition stpqrt.f:189
Here is the call graph for this function:
Here is the caller graph for this function: