131 RECURSIVE SUBROUTINE zgeqrt3( M, N, A, LDA, T, LDT, INFO )
138 INTEGER info, lda, m, n, ldt
141 COMPLEX*16 a( lda, * ), t( ldt, * )
148 parameter( one = (1.0d+00,0.0d+00) )
151 INTEGER i, i1, j, j1, n1, n2, iinfo
161 ELSE IF( m .LT. n )
THEN
163 ELSE IF( lda .LT. max( 1, m ) )
THEN
165 ELSE IF( ldt .LT. max( 1, n ) )
THEN
169 CALL xerbla(
'ZGEQRT3', -info )
177 CALL zlarfg( m, a(1,1), a( min( 2, m ), 1 ), 1, t(1,1) )
190 CALL zgeqrt3( m, n1, a, lda, t, ldt, iinfo )
196 t( i, j+n1 ) = a( i, j+n1 )
199 CALL ztrmm(
'L',
'L',
'C',
'U', n1, n2, one,
200 & a, lda, t( 1, j1 ), ldt )
202 CALL zgemm(
'C',
'N', n1, n2, m-n1, one, a( j1, 1 ), lda,
203 & a( j1, j1 ), lda, one, t( 1, j1 ), ldt)
205 CALL ztrmm(
'L',
'U',
'C',
'N', n1, n2, one,
206 & t, ldt, t( 1, j1 ), ldt )
208 CALL zgemm(
'N',
'N', m-n1, n2, n1, -one, a( j1, 1 ), lda,
209 & t( 1, j1 ), ldt, one, a( j1, j1 ), lda )
211 CALL ztrmm(
'L',
'L',
'N',
'U', n1, n2, one,
212 & a, lda, t( 1, j1 ), ldt )
216 a( i, j+n1 ) = a( i, j+n1 ) - t( i, j+n1 )
222 CALL zgeqrt3( m-n1, n2, a( j1, j1 ), lda,
223 & t( j1, j1 ), ldt, iinfo )
229 t( i, j+n1 ) = conjg(a( j+n1, i ))
233 CALL ztrmm(
'R',
'L',
'N',
'U', n1, n2, one,
234 & a( j1, j1 ), lda, t( 1, j1 ), ldt )
236 CALL zgemm(
'C',
'N', n1, n2, m-n, one, a( i1, 1 ), lda,
237 & a( i1, j1 ), lda, one, t( 1, j1 ), ldt )
239 CALL ztrmm(
'L',
'U',
'N',
'N', n1, n2, -one, t, ldt,
242 CALL ztrmm(
'R',
'U',
'N',
'N', n1, n2, one,
243 & t( j1, j1 ), ldt, t( 1, j1 ), ldt )
subroutine xerbla(srname, info)
subroutine zgemm(transa, transb, m, n, k, alpha, a, lda, b, ldb, beta, c, ldc)
ZGEMM
recursive subroutine zgeqrt3(m, n, a, lda, t, ldt, info)
ZGEQRT3 recursively computes a QR factorization of a general real or complex matrix using the compact...
subroutine zlarfg(n, alpha, x, incx, tau)
ZLARFG generates an elementary reflector (Householder matrix).
subroutine ztrmm(side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
ZTRMM