LAPACK 3.12.1
LAPACK: Linear Algebra PACKage
Loading...
Searching...
No Matches

◆ sspgvd()

subroutine sspgvd ( integer itype,
character jobz,
character uplo,
integer n,
real, dimension( * ) ap,
real, dimension( * ) bp,
real, dimension( * ) w,
real, dimension( ldz, * ) z,
integer ldz,
real, dimension( * ) work,
integer lwork,
integer, dimension( * ) iwork,
integer liwork,
integer info )

SSPGVD

Download SSPGVD + dependencies [TGZ] [ZIP] [TXT]

Purpose:
!>
!> SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
!> of a real generalized symmetric-definite eigenproblem, of the form
!> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
!> B are assumed to be symmetric, stored in packed format, and B is also
!> positive definite.
!> If eigenvectors are desired, it uses a divide and conquer algorithm.
!>
!> 
Parameters
[in]ITYPE
!>          ITYPE is INTEGER
!>          Specifies the problem type to be solved:
!>          = 1:  A*x = (lambda)*B*x
!>          = 2:  A*B*x = (lambda)*x
!>          = 3:  B*A*x = (lambda)*x
!> 
[in]JOBZ
!>          JOBZ is CHARACTER*1
!>          = 'N':  Compute eigenvalues only;
!>          = 'V':  Compute eigenvalues and eigenvectors.
!> 
[in]UPLO
!>          UPLO is CHARACTER*1
!>          = 'U':  Upper triangles of A and B are stored;
!>          = 'L':  Lower triangles of A and B are stored.
!> 
[in]N
!>          N is INTEGER
!>          The order of the matrices A and B.  N >= 0.
!> 
[in,out]AP
!>          AP is REAL array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          A, packed columnwise in a linear array.  The j-th column of A
!>          is stored in the array AP as follows:
!>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
!>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
!>
!>          On exit, the contents of AP are destroyed.
!> 
[in,out]BP
!>          BP is REAL array, dimension (N*(N+1)/2)
!>          On entry, the upper or lower triangle of the symmetric matrix
!>          B, packed columnwise in a linear array.  The j-th column of B
!>          is stored in the array BP as follows:
!>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
!>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
!>
!>          On exit, the triangular factor U or L from the Cholesky
!>          factorization B = U**T*U or B = L*L**T, in the same storage
!>          format as B.
!> 
[out]W
!>          W is REAL array, dimension (N)
!>          If INFO = 0, the eigenvalues in ascending order.
!> 
[out]Z
!>          Z is REAL array, dimension (LDZ, N)
!>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
!>          eigenvectors.  The eigenvectors are normalized as follows:
!>          if ITYPE = 1 or 2, Z**T*B*Z = I;
!>          if ITYPE = 3, Z**T*inv(B)*Z = I.
!>          If JOBZ = 'N', then Z is not referenced.
!> 
[in]LDZ
!>          LDZ is INTEGER
!>          The leading dimension of the array Z.  LDZ >= 1, and if
!>          JOBZ = 'V', LDZ >= max(1,N).
!> 
[out]WORK
!>          WORK is REAL array, dimension (MAX(1,LWORK))
!>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
!> 
[in]LWORK
!>          LWORK is INTEGER
!>          The dimension of the array WORK.
!>          If N <= 1,               LWORK >= 1.
!>          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
!>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
!>
!>          If LWORK = -1, then a workspace query is assumed; the routine
!>          only calculates the required sizes of the WORK and IWORK
!>          arrays, returns these values as the first entries of the WORK
!>          and IWORK arrays, and no error message related to LWORK or
!>          LIWORK is issued by XERBLA.
!> 
[out]IWORK
!>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
!>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
!> 
[in]LIWORK
!>          LIWORK is INTEGER
!>          The dimension of the array IWORK.
!>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
!>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
!>
!>          If LIWORK = -1, then a workspace query is assumed; the
!>          routine only calculates the required sizes of the WORK and
!>          IWORK arrays, returns these values as the first entries of
!>          the WORK and IWORK arrays, and no error message related to
!>          LWORK or LIWORK is issued by XERBLA.
!> 
[out]INFO
!>          INFO is INTEGER
!>          = 0:  successful exit
!>          < 0:  if INFO = -i, the i-th argument had an illegal value
!>          > 0:  SPPTRF or SSPEVD returned an error code:
!>             <= N:  if INFO = i, SSPEVD failed to converge;
!>                    i off-diagonal elements of an intermediate
!>                    tridiagonal form did not converge to zero;
!>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
!>                    principal minor of order i of B is not positive.
!>                    The factorization of B could not be completed and
!>                    no eigenvalues or eigenvectors were computed.
!> 
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Contributors:
Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 200 of file sspgvd.f.

203*
204* -- LAPACK driver routine --
205* -- LAPACK is a software package provided by Univ. of Tennessee, --
206* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
207*
208* .. Scalar Arguments ..
209 CHARACTER JOBZ, UPLO
210 INTEGER INFO, ITYPE, LDZ, LIWORK, LWORK, N
211* ..
212* .. Array Arguments ..
213 INTEGER IWORK( * )
214 REAL AP( * ), BP( * ), W( * ), WORK( * ),
215 $ Z( LDZ, * )
216* ..
217*
218* =====================================================================
219*
220* .. Local Scalars ..
221 LOGICAL LQUERY, UPPER, WANTZ
222 CHARACTER TRANS
223 INTEGER J, LIWMIN, LWMIN, NEIG
224* ..
225* .. External Functions ..
226 LOGICAL LSAME
227 REAL SROUNDUP_LWORK
228 EXTERNAL lsame, sroundup_lwork
229* ..
230* .. External Subroutines ..
231 EXTERNAL spptrf, sspevd, sspgst, stpmv, stpsv,
232 $ xerbla
233* ..
234* .. Intrinsic Functions ..
235 INTRINSIC max, real
236* ..
237* .. Executable Statements ..
238*
239* Test the input parameters.
240*
241 wantz = lsame( jobz, 'V' )
242 upper = lsame( uplo, 'U' )
243 lquery = ( lwork.EQ.-1 .OR. liwork.EQ.-1 )
244*
245 info = 0
246 IF( itype.LT.1 .OR. itype.GT.3 ) THEN
247 info = -1
248 ELSE IF( .NOT.( wantz .OR. lsame( jobz, 'N' ) ) ) THEN
249 info = -2
250 ELSE IF( .NOT.( upper .OR. lsame( uplo, 'L' ) ) ) THEN
251 info = -3
252 ELSE IF( n.LT.0 ) THEN
253 info = -4
254 ELSE IF( ldz.LT.1 .OR. ( wantz .AND. ldz.LT.n ) ) THEN
255 info = -9
256 END IF
257*
258 IF( info.EQ.0 ) THEN
259 IF( n.LE.1 ) THEN
260 liwmin = 1
261 lwmin = 1
262 ELSE
263 IF( wantz ) THEN
264 liwmin = 3 + 5*n
265 lwmin = 1 + 6*n + 2*n**2
266 ELSE
267 liwmin = 1
268 lwmin = 2*n
269 END IF
270 END IF
271 work( 1 ) = sroundup_lwork(lwmin)
272 iwork( 1 ) = liwmin
273 IF( lwork.LT.lwmin .AND. .NOT.lquery ) THEN
274 info = -11
275 ELSE IF( liwork.LT.liwmin .AND. .NOT.lquery ) THEN
276 info = -13
277 END IF
278 END IF
279*
280 IF( info.NE.0 ) THEN
281 CALL xerbla( 'SSPGVD', -info )
282 RETURN
283 ELSE IF( lquery ) THEN
284 RETURN
285 END IF
286*
287* Quick return if possible
288*
289 IF( n.EQ.0 )
290 $ RETURN
291*
292* Form a Cholesky factorization of BP.
293*
294 CALL spptrf( uplo, n, bp, info )
295 IF( info.NE.0 ) THEN
296 info = n + info
297 RETURN
298 END IF
299*
300* Transform problem to standard eigenvalue problem and solve.
301*
302 CALL sspgst( itype, uplo, n, ap, bp, info )
303 CALL sspevd( jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork,
304 $ liwork, info )
305 lwmin = int( max( real( lwmin ), real( work( 1 ) ) ) )
306 liwmin = int( max( real( liwmin ), real( iwork( 1 ) ) ) )
307*
308 IF( wantz ) THEN
309*
310* Backtransform eigenvectors to the original problem.
311*
312 neig = n
313 IF( info.GT.0 )
314 $ neig = info - 1
315 IF( itype.EQ.1 .OR. itype.EQ.2 ) THEN
316*
317* For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
318* backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
319*
320 IF( upper ) THEN
321 trans = 'N'
322 ELSE
323 trans = 'T'
324 END IF
325*
326 DO 10 j = 1, neig
327 CALL stpsv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
328 $ 1 )
329 10 CONTINUE
330*
331 ELSE IF( itype.EQ.3 ) THEN
332*
333* For B*A*x=(lambda)*x;
334* backtransform eigenvectors: x = L*y or U**T *y
335*
336 IF( upper ) THEN
337 trans = 'T'
338 ELSE
339 trans = 'N'
340 END IF
341*
342 DO 20 j = 1, neig
343 CALL stpmv( uplo, trans, 'Non-unit', n, bp, z( 1, j ),
344 $ 1 )
345 20 CONTINUE
346 END IF
347 END IF
348*
349 work( 1 ) = sroundup_lwork(lwmin)
350 iwork( 1 ) = liwmin
351*
352 RETURN
353*
354* End of SSPGVD
355*
subroutine xerbla(srname, info)
Definition cblat2.f:3285
subroutine sspevd(jobz, uplo, n, ap, w, z, ldz, work, lwork, iwork, liwork, info)
SSPEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrice...
Definition sspevd.f:170
subroutine sspgst(itype, uplo, n, ap, bp, info)
SSPGST
Definition sspgst.f:111
logical function lsame(ca, cb)
LSAME
Definition lsame.f:48
subroutine spptrf(uplo, n, ap, info)
SPPTRF
Definition spptrf.f:117
real function sroundup_lwork(lwork)
SROUNDUP_LWORK
subroutine stpmv(uplo, trans, diag, n, ap, x, incx)
STPMV
Definition stpmv.f:142
subroutine stpsv(uplo, trans, diag, n, ap, x, incx)
STPSV
Definition stpsv.f:144
Here is the call graph for this function:
Here is the caller graph for this function: