LAPACK  3.10.1
LAPACK: Linear Algebra PACKage
ddrvge.f
Go to the documentation of this file.
1 *> \brief \b DDRVGE
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE DDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
12 * A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
13 * RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NOUT, NRHS
18 * DOUBLE PRECISION THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NVAL( * )
23 * DOUBLE PRECISION A( * ), AFAC( * ), ASAV( * ), B( * ),
24 * $ BSAV( * ), RWORK( * ), S( * ), WORK( * ),
25 * $ X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> DDRVGE tests the driver routines DGESV and -SVX.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] DOTYPE
41 *> \verbatim
42 *> DOTYPE is LOGICAL array, dimension (NTYPES)
43 *> The matrix types to be used for testing. Matrices of type j
44 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
45 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
46 *> \endverbatim
47 *>
48 *> \param[in] NN
49 *> \verbatim
50 *> NN is INTEGER
51 *> The number of values of N contained in the vector NVAL.
52 *> \endverbatim
53 *>
54 *> \param[in] NVAL
55 *> \verbatim
56 *> NVAL is INTEGER array, dimension (NN)
57 *> The values of the matrix column dimension N.
58 *> \endverbatim
59 *>
60 *> \param[in] NRHS
61 *> \verbatim
62 *> NRHS is INTEGER
63 *> The number of right hand side vectors to be generated for
64 *> each linear system.
65 *> \endverbatim
66 *>
67 *> \param[in] THRESH
68 *> \verbatim
69 *> THRESH is DOUBLE PRECISION
70 *> The threshold value for the test ratios. A result is
71 *> included in the output file if RESULT >= THRESH. To have
72 *> every test ratio printed, use THRESH = 0.
73 *> \endverbatim
74 *>
75 *> \param[in] TSTERR
76 *> \verbatim
77 *> TSTERR is LOGICAL
78 *> Flag that indicates whether error exits are to be tested.
79 *> \endverbatim
80 *>
81 *> \param[in] NMAX
82 *> \verbatim
83 *> NMAX is INTEGER
84 *> The maximum value permitted for N, used in dimensioning the
85 *> work arrays.
86 *> \endverbatim
87 *>
88 *> \param[out] A
89 *> \verbatim
90 *> A is DOUBLE PRECISION array, dimension (NMAX*NMAX)
91 *> \endverbatim
92 *>
93 *> \param[out] AFAC
94 *> \verbatim
95 *> AFAC is DOUBLE PRECISION array, dimension (NMAX*NMAX)
96 *> \endverbatim
97 *>
98 *> \param[out] ASAV
99 *> \verbatim
100 *> ASAV is DOUBLE PRECISION array, dimension (NMAX*NMAX)
101 *> \endverbatim
102 *>
103 *> \param[out] B
104 *> \verbatim
105 *> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
106 *> \endverbatim
107 *>
108 *> \param[out] BSAV
109 *> \verbatim
110 *> BSAV is DOUBLE PRECISION array, dimension (NMAX*NRHS)
111 *> \endverbatim
112 *>
113 *> \param[out] X
114 *> \verbatim
115 *> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
116 *> \endverbatim
117 *>
118 *> \param[out] XACT
119 *> \verbatim
120 *> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
121 *> \endverbatim
122 *>
123 *> \param[out] S
124 *> \verbatim
125 *> S is DOUBLE PRECISION array, dimension (2*NMAX)
126 *> \endverbatim
127 *>
128 *> \param[out] WORK
129 *> \verbatim
130 *> WORK is DOUBLE PRECISION array, dimension
131 *> (NMAX*max(3,NRHS))
132 *> \endverbatim
133 *>
134 *> \param[out] RWORK
135 *> \verbatim
136 *> RWORK is DOUBLE PRECISION array, dimension (2*NRHS+NMAX)
137 *> \endverbatim
138 *>
139 *> \param[out] IWORK
140 *> \verbatim
141 *> IWORK is INTEGER array, dimension (2*NMAX)
142 *> \endverbatim
143 *>
144 *> \param[in] NOUT
145 *> \verbatim
146 *> NOUT is INTEGER
147 *> The unit number for output.
148 *> \endverbatim
149 *
150 * Authors:
151 * ========
152 *
153 *> \author Univ. of Tennessee
154 *> \author Univ. of California Berkeley
155 *> \author Univ. of Colorado Denver
156 *> \author NAG Ltd.
157 *
158 *> \ingroup double_lin
159 *
160 * =====================================================================
161  SUBROUTINE ddrvge( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX,
162  $ A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK,
163  $ RWORK, IWORK, NOUT )
164 *
165 * -- LAPACK test routine --
166 * -- LAPACK is a software package provided by Univ. of Tennessee, --
167 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
168 *
169 * .. Scalar Arguments ..
170  LOGICAL TSTERR
171  INTEGER NMAX, NN, NOUT, NRHS
172  DOUBLE PRECISION THRESH
173 * ..
174 * .. Array Arguments ..
175  LOGICAL DOTYPE( * )
176  INTEGER IWORK( * ), NVAL( * )
177  DOUBLE PRECISION A( * ), AFAC( * ), ASAV( * ), B( * ),
178  $ bsav( * ), rwork( * ), s( * ), work( * ),
179  $ x( * ), xact( * )
180 * ..
181 *
182 * =====================================================================
183 *
184 * .. Parameters ..
185  DOUBLE PRECISION ONE, ZERO
186  PARAMETER ( ONE = 1.0d+0, zero = 0.0d+0 )
187  INTEGER NTYPES
188  parameter( ntypes = 11 )
189  INTEGER NTESTS
190  parameter( ntests = 7 )
191  INTEGER NTRAN
192  parameter( ntran = 3 )
193 * ..
194 * .. Local Scalars ..
195  LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
196  CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
197  CHARACTER*3 PATH
198  INTEGER I, IEQUED, IFACT, IMAT, IN, INFO, IOFF, ITRAN,
199  $ izero, k, k1, kl, ku, lda, lwork, mode, n, nb,
200  $ nbmin, nerrs, nfact, nfail, nimat, nrun, nt
201  DOUBLE PRECISION AINVNM, AMAX, ANORM, ANORMI, ANORMO, CNDNUM,
202  $ COLCND, RCOND, RCONDC, RCONDI, RCONDO, ROLDC,
203  $ roldi, roldo, rowcnd, rpvgrw
204 * ..
205 * .. Local Arrays ..
206  CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
207  INTEGER ISEED( 4 ), ISEEDY( 4 )
208  DOUBLE PRECISION RESULT( NTESTS )
209 * ..
210 * .. External Functions ..
211  LOGICAL LSAME
212  DOUBLE PRECISION DGET06, DLAMCH, DLANGE, DLANTR
213  EXTERNAL lsame, dget06, dlamch, dlange, dlantr
214 * ..
215 * .. External Subroutines ..
216  EXTERNAL aladhd, alaerh, alasvm, derrvx, dgeequ, dgesv,
219  $ dlatms, xlaenv
220 * ..
221 * .. Intrinsic Functions ..
222  INTRINSIC abs, max
223 * ..
224 * .. Scalars in Common ..
225  LOGICAL LERR, OK
226  CHARACTER*32 SRNAMT
227  INTEGER INFOT, NUNIT
228 * ..
229 * .. Common blocks ..
230  COMMON / infoc / infot, nunit, ok, lerr
231  COMMON / srnamc / srnamt
232 * ..
233 * .. Data statements ..
234  DATA iseedy / 1988, 1989, 1990, 1991 /
235  DATA transs / 'N', 'T', 'C' /
236  DATA facts / 'F', 'N', 'E' /
237  DATA equeds / 'N', 'R', 'C', 'B' /
238 * ..
239 * .. Executable Statements ..
240 *
241 * Initialize constants and the random number seed.
242 *
243  path( 1: 1 ) = 'Double precision'
244  path( 2: 3 ) = 'GE'
245  nrun = 0
246  nfail = 0
247  nerrs = 0
248  DO 10 i = 1, 4
249  iseed( i ) = iseedy( i )
250  10 CONTINUE
251 *
252 * Test the error exits
253 *
254  IF( tsterr )
255  $ CALL derrvx( path, nout )
256  infot = 0
257 *
258 * Set the block size and minimum block size for testing.
259 *
260  nb = 1
261  nbmin = 2
262  CALL xlaenv( 1, nb )
263  CALL xlaenv( 2, nbmin )
264 *
265 * Do for each value of N in NVAL
266 *
267  DO 90 in = 1, nn
268  n = nval( in )
269  lda = max( n, 1 )
270  xtype = 'N'
271  nimat = ntypes
272  IF( n.LE.0 )
273  $ nimat = 1
274 *
275  DO 80 imat = 1, nimat
276 *
277 * Do the tests only if DOTYPE( IMAT ) is true.
278 *
279  IF( .NOT.dotype( imat ) )
280  $ GO TO 80
281 *
282 * Skip types 5, 6, or 7 if the matrix size is too small.
283 *
284  zerot = imat.GE.5 .AND. imat.LE.7
285  IF( zerot .AND. n.LT.imat-4 )
286  $ GO TO 80
287 *
288 * Set up parameters with DLATB4 and generate a test matrix
289 * with DLATMS.
290 *
291  CALL dlatb4( path, imat, n, n, TYPE, kl, ku, anorm, mode,
292  $ cndnum, dist )
293  rcondc = one / cndnum
294 *
295  srnamt = 'DLATMS'
296  CALL dlatms( n, n, dist, iseed, TYPE, rwork, mode, cndnum,
297  $ anorm, kl, ku, 'No packing', a, lda, work,
298  $ info )
299 *
300 * Check error code from DLATMS.
301 *
302  IF( info.NE.0 ) THEN
303  CALL alaerh( path, 'DLATMS', info, 0, ' ', n, n, -1, -1,
304  $ -1, imat, nfail, nerrs, nout )
305  GO TO 80
306  END IF
307 *
308 * For types 5-7, zero one or more columns of the matrix to
309 * test that INFO is returned correctly.
310 *
311  IF( zerot ) THEN
312  IF( imat.EQ.5 ) THEN
313  izero = 1
314  ELSE IF( imat.EQ.6 ) THEN
315  izero = n
316  ELSE
317  izero = n / 2 + 1
318  END IF
319  ioff = ( izero-1 )*lda
320  IF( imat.LT.7 ) THEN
321  DO 20 i = 1, n
322  a( ioff+i ) = zero
323  20 CONTINUE
324  ELSE
325  CALL dlaset( 'Full', n, n-izero+1, zero, zero,
326  $ a( ioff+1 ), lda )
327  END IF
328  ELSE
329  izero = 0
330  END IF
331 *
332 * Save a copy of the matrix A in ASAV.
333 *
334  CALL dlacpy( 'Full', n, n, a, lda, asav, lda )
335 *
336  DO 70 iequed = 1, 4
337  equed = equeds( iequed )
338  IF( iequed.EQ.1 ) THEN
339  nfact = 3
340  ELSE
341  nfact = 1
342  END IF
343 *
344  DO 60 ifact = 1, nfact
345  fact = facts( ifact )
346  prefac = lsame( fact, 'F' )
347  nofact = lsame( fact, 'N' )
348  equil = lsame( fact, 'E' )
349 *
350  IF( zerot ) THEN
351  IF( prefac )
352  $ GO TO 60
353  rcondo = zero
354  rcondi = zero
355 *
356  ELSE IF( .NOT.nofact ) THEN
357 *
358 * Compute the condition number for comparison with
359 * the value returned by DGESVX (FACT = 'N' reuses
360 * the condition number from the previous iteration
361 * with FACT = 'F').
362 *
363  CALL dlacpy( 'Full', n, n, asav, lda, afac, lda )
364  IF( equil .OR. iequed.GT.1 ) THEN
365 *
366 * Compute row and column scale factors to
367 * equilibrate the matrix A.
368 *
369  CALL dgeequ( n, n, afac, lda, s, s( n+1 ),
370  $ rowcnd, colcnd, amax, info )
371  IF( info.EQ.0 .AND. n.GT.0 ) THEN
372  IF( lsame( equed, 'R' ) ) THEN
373  rowcnd = zero
374  colcnd = one
375  ELSE IF( lsame( equed, 'C' ) ) THEN
376  rowcnd = one
377  colcnd = zero
378  ELSE IF( lsame( equed, 'B' ) ) THEN
379  rowcnd = zero
380  colcnd = zero
381  END IF
382 *
383 * Equilibrate the matrix.
384 *
385  CALL dlaqge( n, n, afac, lda, s, s( n+1 ),
386  $ rowcnd, colcnd, amax, equed )
387  END IF
388  END IF
389 *
390 * Save the condition number of the non-equilibrated
391 * system for use in DGET04.
392 *
393  IF( equil ) THEN
394  roldo = rcondo
395  roldi = rcondi
396  END IF
397 *
398 * Compute the 1-norm and infinity-norm of A.
399 *
400  anormo = dlange( '1', n, n, afac, lda, rwork )
401  anormi = dlange( 'I', n, n, afac, lda, rwork )
402 *
403 * Factor the matrix A.
404 *
405  srnamt = 'DGETRF'
406  CALL dgetrf( n, n, afac, lda, iwork, info )
407 *
408 * Form the inverse of A.
409 *
410  CALL dlacpy( 'Full', n, n, afac, lda, a, lda )
411  lwork = nmax*max( 3, nrhs )
412  srnamt = 'DGETRI'
413  CALL dgetri( n, a, lda, iwork, work, lwork, info )
414 *
415 * Compute the 1-norm condition number of A.
416 *
417  ainvnm = dlange( '1', n, n, a, lda, rwork )
418  IF( anormo.LE.zero .OR. ainvnm.LE.zero ) THEN
419  rcondo = one
420  ELSE
421  rcondo = ( one / anormo ) / ainvnm
422  END IF
423 *
424 * Compute the infinity-norm condition number of A.
425 *
426  ainvnm = dlange( 'I', n, n, a, lda, rwork )
427  IF( anormi.LE.zero .OR. ainvnm.LE.zero ) THEN
428  rcondi = one
429  ELSE
430  rcondi = ( one / anormi ) / ainvnm
431  END IF
432  END IF
433 *
434  DO 50 itran = 1, ntran
435 *
436 * Do for each value of TRANS.
437 *
438  trans = transs( itran )
439  IF( itran.EQ.1 ) THEN
440  rcondc = rcondo
441  ELSE
442  rcondc = rcondi
443  END IF
444 *
445 * Restore the matrix A.
446 *
447  CALL dlacpy( 'Full', n, n, asav, lda, a, lda )
448 *
449 * Form an exact solution and set the right hand side.
450 *
451  srnamt = 'DLARHS'
452  CALL dlarhs( path, xtype, 'Full', trans, n, n, kl,
453  $ ku, nrhs, a, lda, xact, lda, b, lda,
454  $ iseed, info )
455  xtype = 'C'
456  CALL dlacpy( 'Full', n, nrhs, b, lda, bsav, lda )
457 *
458  IF( nofact .AND. itran.EQ.1 ) THEN
459 *
460 * --- Test DGESV ---
461 *
462 * Compute the LU factorization of the matrix and
463 * solve the system.
464 *
465  CALL dlacpy( 'Full', n, n, a, lda, afac, lda )
466  CALL dlacpy( 'Full', n, nrhs, b, lda, x, lda )
467 *
468  srnamt = 'DGESV '
469  CALL dgesv( n, nrhs, afac, lda, iwork, x, lda,
470  $ info )
471 *
472 * Check error code from DGESV .
473 *
474  IF( info.NE.izero )
475  $ CALL alaerh( path, 'DGESV ', info, izero,
476  $ ' ', n, n, -1, -1, nrhs, imat,
477  $ nfail, nerrs, nout )
478 *
479 * Reconstruct matrix from factors and compute
480 * residual.
481 *
482  CALL dget01( n, n, a, lda, afac, lda, iwork,
483  $ rwork, result( 1 ) )
484  nt = 1
485  IF( izero.EQ.0 ) THEN
486 *
487 * Compute residual of the computed solution.
488 *
489  CALL dlacpy( 'Full', n, nrhs, b, lda, work,
490  $ lda )
491  CALL dget02( 'No transpose', n, n, nrhs, a,
492  $ lda, x, lda, work, lda, rwork,
493  $ result( 2 ) )
494 *
495 * Check solution from generated exact solution.
496 *
497  CALL dget04( n, nrhs, x, lda, xact, lda,
498  $ rcondc, result( 3 ) )
499  nt = 3
500  END IF
501 *
502 * Print information about the tests that did not
503 * pass the threshold.
504 *
505  DO 30 k = 1, nt
506  IF( result( k ).GE.thresh ) THEN
507  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
508  $ CALL aladhd( nout, path )
509  WRITE( nout, fmt = 9999 )'DGESV ', n,
510  $ imat, k, result( k )
511  nfail = nfail + 1
512  END IF
513  30 CONTINUE
514  nrun = nrun + nt
515  END IF
516 *
517 * --- Test DGESVX ---
518 *
519  IF( .NOT.prefac )
520  $ CALL dlaset( 'Full', n, n, zero, zero, afac,
521  $ lda )
522  CALL dlaset( 'Full', n, nrhs, zero, zero, x, lda )
523  IF( iequed.GT.1 .AND. n.GT.0 ) THEN
524 *
525 * Equilibrate the matrix if FACT = 'F' and
526 * EQUED = 'R', 'C', or 'B'.
527 *
528  CALL dlaqge( n, n, a, lda, s, s( n+1 ), rowcnd,
529  $ colcnd, amax, equed )
530  END IF
531 *
532 * Solve the system and compute the condition number
533 * and error bounds using DGESVX.
534 *
535  srnamt = 'DGESVX'
536  CALL dgesvx( fact, trans, n, nrhs, a, lda, afac,
537  $ lda, iwork, equed, s, s( n+1 ), b,
538  $ lda, x, lda, rcond, rwork,
539  $ rwork( nrhs+1 ), work, iwork( n+1 ),
540  $ info )
541 *
542 * Check the error code from DGESVX.
543 *
544  IF( info.NE.izero )
545  $ CALL alaerh( path, 'DGESVX', info, izero,
546  $ fact // trans, n, n, -1, -1, nrhs,
547  $ imat, nfail, nerrs, nout )
548 *
549 * Compare WORK(1) from DGESVX with the computed
550 * reciprocal pivot growth factor RPVGRW
551 *
552  IF( info.NE.0 .AND. info.LE.n) THEN
553  rpvgrw = dlantr( 'M', 'U', 'N', info, info,
554  $ afac, lda, work )
555  IF( rpvgrw.EQ.zero ) THEN
556  rpvgrw = one
557  ELSE
558  rpvgrw = dlange( 'M', n, info, a, lda,
559  $ work ) / rpvgrw
560  END IF
561  ELSE
562  rpvgrw = dlantr( 'M', 'U', 'N', n, n, afac, lda,
563  $ work )
564  IF( rpvgrw.EQ.zero ) THEN
565  rpvgrw = one
566  ELSE
567  rpvgrw = dlange( 'M', n, n, a, lda, work ) /
568  $ rpvgrw
569  END IF
570  END IF
571  result( 7 ) = abs( rpvgrw-work( 1 ) ) /
572  $ max( work( 1 ), rpvgrw ) /
573  $ dlamch( 'E' )
574 *
575  IF( .NOT.prefac ) THEN
576 *
577 * Reconstruct matrix from factors and compute
578 * residual.
579 *
580  CALL dget01( n, n, a, lda, afac, lda, iwork,
581  $ rwork( 2*nrhs+1 ), result( 1 ) )
582  k1 = 1
583  ELSE
584  k1 = 2
585  END IF
586 *
587  IF( info.EQ.0 ) THEN
588  trfcon = .false.
589 *
590 * Compute residual of the computed solution.
591 *
592  CALL dlacpy( 'Full', n, nrhs, bsav, lda, work,
593  $ lda )
594  CALL dget02( trans, n, n, nrhs, asav, lda, x,
595  $ lda, work, lda, rwork( 2*nrhs+1 ),
596  $ result( 2 ) )
597 *
598 * Check solution from generated exact solution.
599 *
600  IF( nofact .OR. ( prefac .AND. lsame( equed,
601  $ 'N' ) ) ) THEN
602  CALL dget04( n, nrhs, x, lda, xact, lda,
603  $ rcondc, result( 3 ) )
604  ELSE
605  IF( itran.EQ.1 ) THEN
606  roldc = roldo
607  ELSE
608  roldc = roldi
609  END IF
610  CALL dget04( n, nrhs, x, lda, xact, lda,
611  $ roldc, result( 3 ) )
612  END IF
613 *
614 * Check the error bounds from iterative
615 * refinement.
616 *
617  CALL dget07( trans, n, nrhs, asav, lda, b, lda,
618  $ x, lda, xact, lda, rwork, .true.,
619  $ rwork( nrhs+1 ), result( 4 ) )
620  ELSE
621  trfcon = .true.
622  END IF
623 *
624 * Compare RCOND from DGESVX with the computed value
625 * in RCONDC.
626 *
627  result( 6 ) = dget06( rcond, rcondc )
628 *
629 * Print information about the tests that did not pass
630 * the threshold.
631 *
632  IF( .NOT.trfcon ) THEN
633  DO 40 k = k1, ntests
634  IF( result( k ).GE.thresh ) THEN
635  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
636  $ CALL aladhd( nout, path )
637  IF( prefac ) THEN
638  WRITE( nout, fmt = 9997 )'DGESVX',
639  $ fact, trans, n, equed, imat, k,
640  $ result( k )
641  ELSE
642  WRITE( nout, fmt = 9998 )'DGESVX',
643  $ fact, trans, n, imat, k, result( k )
644  END IF
645  nfail = nfail + 1
646  END IF
647  40 CONTINUE
648  nrun = nrun + ntests - k1 + 1
649  ELSE
650  IF( result( 1 ).GE.thresh .AND. .NOT.prefac )
651  $ THEN
652  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
653  $ CALL aladhd( nout, path )
654  IF( prefac ) THEN
655  WRITE( nout, fmt = 9997 )'DGESVX', fact,
656  $ trans, n, equed, imat, 1, result( 1 )
657  ELSE
658  WRITE( nout, fmt = 9998 )'DGESVX', fact,
659  $ trans, n, imat, 1, result( 1 )
660  END IF
661  nfail = nfail + 1
662  nrun = nrun + 1
663  END IF
664  IF( result( 6 ).GE.thresh ) THEN
665  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
666  $ CALL aladhd( nout, path )
667  IF( prefac ) THEN
668  WRITE( nout, fmt = 9997 )'DGESVX', fact,
669  $ trans, n, equed, imat, 6, result( 6 )
670  ELSE
671  WRITE( nout, fmt = 9998 )'DGESVX', fact,
672  $ trans, n, imat, 6, result( 6 )
673  END IF
674  nfail = nfail + 1
675  nrun = nrun + 1
676  END IF
677  IF( result( 7 ).GE.thresh ) THEN
678  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
679  $ CALL aladhd( nout, path )
680  IF( prefac ) THEN
681  WRITE( nout, fmt = 9997 )'DGESVX', fact,
682  $ trans, n, equed, imat, 7, result( 7 )
683  ELSE
684  WRITE( nout, fmt = 9998 )'DGESVX', fact,
685  $ trans, n, imat, 7, result( 7 )
686  END IF
687  nfail = nfail + 1
688  nrun = nrun + 1
689  END IF
690 *
691  END IF
692 *
693  50 CONTINUE
694  60 CONTINUE
695  70 CONTINUE
696  80 CONTINUE
697  90 CONTINUE
698 *
699 * Print a summary of the results.
700 *
701  CALL alasvm( path, nout, nfail, nrun, nerrs )
702 *
703  9999 FORMAT( 1x, a, ', N =', i5, ', type ', i2, ', test(', i2, ') =',
704  $ g12.5 )
705  9998 FORMAT( 1x, a, ', FACT=''', a1, ''', TRANS=''', a1, ''', N=', i5,
706  $ ', type ', i2, ', test(', i1, ')=', g12.5 )
707  9997 FORMAT( 1x, a, ', FACT=''', a1, ''', TRANS=''', a1, ''', N=', i5,
708  $ ', EQUED=''', a1, ''', type ', i2, ', test(', i1, ')=',
709  $ g12.5 )
710  RETURN
711 *
712 * End of DDRVGE
713 *
714  END
subroutine dlacpy(UPLO, M, N, A, LDA, B, LDB)
DLACPY copies all or part of one two-dimensional array to another.
Definition: dlacpy.f:103
subroutine dlaset(UPLO, M, N, ALPHA, BETA, A, LDA)
DLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values.
Definition: dlaset.f:110
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
Definition: alasvm.f:73
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:81
subroutine aladhd(IOUNIT, PATH)
ALADHD
Definition: aladhd.f:90
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:147
subroutine dlarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
DLARHS
Definition: dlarhs.f:205
subroutine dget02(TRANS, M, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
DGET02
Definition: dget02.f:135
subroutine dget07(TRANS, N, NRHS, A, LDA, B, LDB, X, LDX, XACT, LDXACT, FERR, CHKFERR, BERR, RESLTS)
DGET07
Definition: dget07.f:165
subroutine dget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
DGET04
Definition: dget04.f:102
subroutine dget01(M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK, RESID)
DGET01
Definition: dget01.f:107
subroutine dlatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
DLATB4
Definition: dlatb4.f:120
subroutine derrvx(PATH, NUNIT)
DERRVX
Definition: derrvx.f:55
subroutine ddrvge(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, NMAX, A, AFAC, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, IWORK, NOUT)
DDRVGE
Definition: ddrvge.f:164
subroutine dlatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
DLATMS
Definition: dlatms.f:321
subroutine dlaqge(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, EQUED)
DLAQGE scales a general rectangular matrix, using row and column scaling factors computed by sgeequ.
Definition: dlaqge.f:142
subroutine dgetrf(M, N, A, LDA, IPIV, INFO)
DGETRF
Definition: dgetrf.f:108
subroutine dgeequ(M, N, A, LDA, R, C, ROWCND, COLCND, AMAX, INFO)
DGEEQU
Definition: dgeequ.f:139
subroutine dgetri(N, A, LDA, IPIV, WORK, LWORK, INFO)
DGETRI
Definition: dgetri.f:114
subroutine dgesv(N, NRHS, A, LDA, IPIV, B, LDB, INFO)
DGESV computes the solution to system of linear equations A * X = B for GE matrices
Definition: dgesv.f:122
subroutine dgesvx(FACT, TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, IWORK, INFO)
DGESVX computes the solution to system of linear equations A * X = B for GE matrices
Definition: dgesvx.f:349