LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
cchksy_rook.f
Go to the documentation of this file.
1 *> \brief \b CCHKSY_ROOK
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CCHKSY_ROOK( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
12 * THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X,
13 * XACT, WORK, RWORK, IWORK, NOUT )
14 *
15 * .. Scalar Arguments ..
16 * LOGICAL TSTERR
17 * INTEGER NMAX, NN, NNB, NNS, NOUT
18 * REAL THRESH
19 * ..
20 * .. Array Arguments ..
21 * LOGICAL DOTYPE( * )
22 * INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
23 * REAL RWORK( * )
24 * COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
25 * $ WORK( * ), X( * ), XACT( * )
26 * ..
27 *
28 *
29 *> \par Purpose:
30 * =============
31 *>
32 *> \verbatim
33 *>
34 *> CCHKSY_ROOK tests CSYTRF_ROOK, -TRI_ROOK, -TRS_ROOK,
35 *> and -CON_ROOK.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] DOTYPE
42 *> \verbatim
43 *> DOTYPE is LOGICAL array, dimension (NTYPES)
44 *> The matrix types to be used for testing. Matrices of type j
45 *> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
46 *> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
47 *> \endverbatim
48 *>
49 *> \param[in] NN
50 *> \verbatim
51 *> NN is INTEGER
52 *> The number of values of N contained in the vector NVAL.
53 *> \endverbatim
54 *>
55 *> \param[in] NVAL
56 *> \verbatim
57 *> NVAL is INTEGER array, dimension (NN)
58 *> The values of the matrix dimension N.
59 *> \endverbatim
60 *>
61 *> \param[in] NNB
62 *> \verbatim
63 *> NNB is INTEGER
64 *> The number of values of NB contained in the vector NBVAL.
65 *> \endverbatim
66 *>
67 *> \param[in] NBVAL
68 *> \verbatim
69 *> NBVAL is INTEGER array, dimension (NBVAL)
70 *> The values of the blocksize NB.
71 *> \endverbatim
72 *>
73 *> \param[in] NNS
74 *> \verbatim
75 *> NNS is INTEGER
76 *> The number of values of NRHS contained in the vector NSVAL.
77 *> \endverbatim
78 *>
79 *> \param[in] NSVAL
80 *> \verbatim
81 *> NSVAL is INTEGER array, dimension (NNS)
82 *> The values of the number of right hand sides NRHS.
83 *> \endverbatim
84 *>
85 *> \param[in] THRESH
86 *> \verbatim
87 *> THRESH is REAL
88 *> The threshold value for the test ratios. A result is
89 *> included in the output file if RESULT >= THRESH. To have
90 *> every test ratio printed, use THRESH = 0.
91 *> \endverbatim
92 *>
93 *> \param[in] TSTERR
94 *> \verbatim
95 *> TSTERR is LOGICAL
96 *> Flag that indicates whether error exits are to be tested.
97 *> \endverbatim
98 *>
99 *> \param[in] NMAX
100 *> \verbatim
101 *> NMAX is INTEGER
102 *> The maximum value permitted for N, used in dimensioning the
103 *> work arrays.
104 *> \endverbatim
105 *>
106 *> \param[out] A
107 *> \verbatim
108 *> A is COMPLEX array, dimension (NMAX*NMAX)
109 *> \endverbatim
110 *>
111 *> \param[out] AFAC
112 *> \verbatim
113 *> AFAC is COMPLEX array, dimension (NMAX*NMAX)
114 *> \endverbatim
115 *>
116 *> \param[out] AINV
117 *> \verbatim
118 *> AINV is COMPLEX array, dimension (NMAX*NMAX)
119 *> \endverbatim
120 *>
121 *> \param[out] B
122 *> \verbatim
123 *> B is COMPLEX array, dimension (NMAX*NSMAX)
124 *> where NSMAX is the largest entry in NSVAL.
125 *> \endverbatim
126 *>
127 *> \param[out] X
128 *> \verbatim
129 *> X is COMPLEX array, dimension (NMAX*NSMAX)
130 *> \endverbatim
131 *>
132 *> \param[out] XACT
133 *> \verbatim
134 *> XACT is COMPLEX array, dimension (NMAX*NSMAX)
135 *> \endverbatim
136 *>
137 *> \param[out] WORK
138 *> \verbatim
139 *> WORK is COMPLEX array, dimension (NMAX*max(3,NSMAX))
140 *> \endverbatim
141 *>
142 *> \param[out] RWORK
143 *> \verbatim
144 *> RWORK is REAL array, dimension (max(NMAX,2*NSMAX))
145 *> \endverbatim
146 *>
147 *> \param[out] IWORK
148 *> \verbatim
149 *> IWORK is INTEGER array, dimension (2*NMAX)
150 *> \endverbatim
151 *>
152 *> \param[in] NOUT
153 *> \verbatim
154 *> NOUT is INTEGER
155 *> The unit number for output.
156 *> \endverbatim
157 *
158 * Authors:
159 * ========
160 *
161 *> \author Univ. of Tennessee
162 *> \author Univ. of California Berkeley
163 *> \author Univ. of Colorado Denver
164 *> \author NAG Ltd.
165 *
166 *> \date November 2015
167 *
168 *> \ingroup complex_lin
169 *
170 * =====================================================================
171  SUBROUTINE cchksy_rook( DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL,
172  $ thresh, tsterr, nmax, a, afac, ainv, b, x,
173  $ xact, work, rwork, iwork, nout )
174 *
175 * -- LAPACK test routine (version 3.6.0) --
176 * -- LAPACK is a software package provided by Univ. of Tennessee, --
177 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
178 * November 2015
179 *
180 * .. Scalar Arguments ..
181  LOGICAL TSTERR
182  INTEGER NMAX, NN, NNB, NNS, NOUT
183  REAL THRESH
184 * ..
185 * .. Array Arguments ..
186  LOGICAL DOTYPE( * )
187  INTEGER IWORK( * ), NBVAL( * ), NSVAL( * ), NVAL( * )
188  REAL RWORK( * )
189  COMPLEX A( * ), AFAC( * ), AINV( * ), B( * ),
190  $ work( * ), x( * ), xact( * )
191 * ..
192 *
193 * =====================================================================
194 *
195 * .. Parameters ..
196  REAL ZERO, ONE
197  parameter ( zero = 0.0e+0, one = 1.0e+0 )
198  REAL ONEHALF
199  parameter ( onehalf = 0.5e+0 )
200  REAL EIGHT, SEVTEN
201  parameter ( eight = 8.0e+0, sevten = 17.0e+0 )
202  COMPLEX CZERO
203  parameter ( czero = ( 0.0e+0, 0.0e+0 ) )
204  INTEGER NTYPES
205  parameter ( ntypes = 11 )
206  INTEGER NTESTS
207  parameter ( ntests = 7 )
208 * ..
209 * .. Local Scalars ..
210  LOGICAL TRFCON, ZEROT
211  CHARACTER DIST, TYPE, UPLO, XTYPE
212  CHARACTER*3 PATH, MATPATH
213  INTEGER I, I1, I2, IMAT, IN, INB, INFO, IOFF, IRHS,
214  $ itemp, itemp2, iuplo, izero, j, k, kl, ku, lda,
215  $ lwork, mode, n, nb, nerrs, nfail, nimat, nrhs,
216  $ nrun, nt
217  REAL ALPHA, ANORM, CNDNUM, CONST, SING_MAX,
218  $ sing_min, rcond, rcondc, stemp
219 * ..
220 * .. Local Arrays ..
221  CHARACTER UPLOS( 2 )
222  INTEGER ISEED( 4 ), ISEEDY( 4 )
223  REAL RESULT( ntests )
224  COMPLEX BLOCK( 2, 2 ), CDUMMY( 1 )
225 * ..
226 * .. External Functions ..
227  REAL CLANGE, CLANSY, SGET06
228  EXTERNAL clange, clansy, sget06
229 * ..
230 * .. External Subroutines ..
231  EXTERNAL alaerh, alahd, alasum, cerrsy, cgesvd, cget04,
235 * ..
236 * .. Intrinsic Functions ..
237  INTRINSIC max, min, sqrt
238 * ..
239 * .. Scalars in Common ..
240  LOGICAL LERR, OK
241  CHARACTER*32 SRNAMT
242  INTEGER INFOT, NUNIT
243 * ..
244 * .. Common blocks ..
245  COMMON / infoc / infot, nunit, ok, lerr
246  COMMON / srnamc / srnamt
247 * ..
248 * .. Data statements ..
249  DATA iseedy / 1988, 1989, 1990, 1991 /
250  DATA uplos / 'U', 'L' /
251 * ..
252 * .. Executable Statements ..
253 *
254 * Initialize constants and the random number seed.
255 *
256  alpha = ( one+sqrt( sevten ) ) / eight
257 *
258 * Test path
259 *
260  path( 1: 1 ) = 'Complex precision'
261  path( 2: 3 ) = 'SR'
262 *
263 * Path to generate matrices
264 *
265  matpath( 1: 1 ) = 'Complex precision'
266  matpath( 2: 3 ) = 'SY'
267 *
268  nrun = 0
269  nfail = 0
270  nerrs = 0
271  DO 10 i = 1, 4
272  iseed( i ) = iseedy( i )
273  10 CONTINUE
274 *
275 * Test the error exits
276 *
277  IF( tsterr )
278  $ CALL cerrsy( path, nout )
279  infot = 0
280 *
281 * Set the minimum block size for which the block routine should
282 * be used, which will be later returned by ILAENV
283 *
284  CALL xlaenv( 2, 2 )
285 *
286 * Do for each value of N in NVAL
287 *
288  DO 270 in = 1, nn
289  n = nval( in )
290  lda = max( n, 1 )
291  xtype = 'N'
292  nimat = ntypes
293  IF( n.LE.0 )
294  $ nimat = 1
295 *
296  izero = 0
297 *
298 * Do for each value of matrix type IMAT
299 *
300  DO 260 imat = 1, nimat
301 *
302 * Do the tests only if DOTYPE( IMAT ) is true.
303 *
304  IF( .NOT.dotype( imat ) )
305  $ GO TO 260
306 *
307 * Skip types 3, 4, 5, or 6 if the matrix size is too small.
308 *
309  zerot = imat.GE.3 .AND. imat.LE.6
310  IF( zerot .AND. n.LT.imat-2 )
311  $ GO TO 260
312 *
313 * Do first for UPLO = 'U', then for UPLO = 'L'
314 *
315  DO 250 iuplo = 1, 2
316  uplo = uplos( iuplo )
317 *
318 * Begin generate test matrix A.
319 *
320  IF( imat.NE.ntypes ) THEN
321 *
322 * Set up parameters with CLATB4 for the matrix generator
323 * based on the type of matrix to be generated.
324 *
325  CALL clatb4( matpath, imat, n, n, TYPE, KL, KU, ANORM,
326  $ mode, cndnum, dist )
327 *
328 * Generate a matrix with CLATMS.
329 *
330  srnamt = 'CLATMS'
331  CALL clatms( n, n, dist, iseed, TYPE, RWORK, MODE,
332  $ cndnum, anorm, kl, ku, uplo, a, lda,
333  $ work, info )
334 *
335 * Check error code from CLATMS and handle error.
336 *
337  IF( info.NE.0 ) THEN
338  CALL alaerh( path, 'CLATMS', info, 0, uplo, n, n,
339  $ -1, -1, -1, imat, nfail, nerrs, nout )
340 *
341 * Skip all tests for this generated matrix
342 *
343  GO TO 250
344  END IF
345 *
346 * For matrix types 3-6, zero one or more rows and
347 * columns of the matrix to test that INFO is returned
348 * correctly.
349 *
350  IF( zerot ) THEN
351  IF( imat.EQ.3 ) THEN
352  izero = 1
353  ELSE IF( imat.EQ.4 ) THEN
354  izero = n
355  ELSE
356  izero = n / 2 + 1
357  END IF
358 *
359  IF( imat.LT.6 ) THEN
360 *
361 * Set row and column IZERO to zero.
362 *
363  IF( iuplo.EQ.1 ) THEN
364  ioff = ( izero-1 )*lda
365  DO 20 i = 1, izero - 1
366  a( ioff+i ) = czero
367  20 CONTINUE
368  ioff = ioff + izero
369  DO 30 i = izero, n
370  a( ioff ) = czero
371  ioff = ioff + lda
372  30 CONTINUE
373  ELSE
374  ioff = izero
375  DO 40 i = 1, izero - 1
376  a( ioff ) = czero
377  ioff = ioff + lda
378  40 CONTINUE
379  ioff = ioff - izero
380  DO 50 i = izero, n
381  a( ioff+i ) = czero
382  50 CONTINUE
383  END IF
384  ELSE
385  IF( iuplo.EQ.1 ) THEN
386 *
387 * Set the first IZERO rows and columns to zero.
388 *
389  ioff = 0
390  DO 70 j = 1, n
391  i2 = min( j, izero )
392  DO 60 i = 1, i2
393  a( ioff+i ) = czero
394  60 CONTINUE
395  ioff = ioff + lda
396  70 CONTINUE
397  ELSE
398 *
399 * Set the last IZERO rows and columns to zero.
400 *
401  ioff = 0
402  DO 90 j = 1, n
403  i1 = max( j, izero )
404  DO 80 i = i1, n
405  a( ioff+i ) = czero
406  80 CONTINUE
407  ioff = ioff + lda
408  90 CONTINUE
409  END IF
410  END IF
411  ELSE
412  izero = 0
413  END IF
414 *
415  ELSE
416 *
417 * For matrix kind IMAT = 11, generate special block
418 * diagonal matrix to test alternate code
419 * for the 2 x 2 blocks.
420 *
421  CALL clatsy( uplo, n, a, lda, iseed )
422 *
423  END IF
424 *
425 * End generate test matrix A.
426 *
427 *
428 * Do for each value of NB in NBVAL
429 *
430  DO 240 inb = 1, nnb
431 *
432 * Set the optimal blocksize, which will be later
433 * returned by ILAENV.
434 *
435  nb = nbval( inb )
436  CALL xlaenv( 1, nb )
437 *
438 * Copy the test matrix A into matrix AFAC which
439 * will be factorized in place. This is needed to
440 * preserve the test matrix A for subsequent tests.
441 *
442  CALL clacpy( uplo, n, n, a, lda, afac, lda )
443 *
444 * Compute the L*D*L**T or U*D*U**T factorization of the
445 * matrix. IWORK stores details of the interchanges and
446 * the block structure of D. AINV is a work array for
447 * block factorization, LWORK is the length of AINV.
448 *
449  lwork = max( 2, nb )*lda
450  srnamt = 'CSYTRF_ROOK'
451  CALL csytrf_rook( uplo, n, afac, lda, iwork, ainv,
452  $ lwork, info )
453 *
454 * Adjust the expected value of INFO to account for
455 * pivoting.
456 *
457  k = izero
458  IF( k.GT.0 ) THEN
459  100 CONTINUE
460  IF( iwork( k ).LT.0 ) THEN
461  IF( iwork( k ).NE.-k ) THEN
462  k = -iwork( k )
463  GO TO 100
464  END IF
465  ELSE IF( iwork( k ).NE.k ) THEN
466  k = iwork( k )
467  GO TO 100
468  END IF
469  END IF
470 *
471 * Check error code from CSYTRF_ROOK and handle error.
472 *
473  IF( info.NE.k)
474  $ CALL alaerh( path, 'CSYTRF_ROOK', info, k,
475  $ uplo, n, n, -1, -1, nb, imat,
476  $ nfail, nerrs, nout )
477 *
478 * Set the condition estimate flag if the INFO is not 0.
479 *
480  IF( info.NE.0 ) THEN
481  trfcon = .true.
482  ELSE
483  trfcon = .false.
484  END IF
485 *
486 *+ TEST 1
487 * Reconstruct matrix from factors and compute residual.
488 *
489  CALL csyt01_rook( uplo, n, a, lda, afac, lda, iwork,
490  $ ainv, lda, rwork, result( 1 ) )
491  nt = 1
492 *
493 *+ TEST 2
494 * Form the inverse and compute the residual,
495 * if the factorization was competed without INFO > 0
496 * (i.e. there is no zero rows and columns).
497 * Do it only for the first block size.
498 *
499  IF( inb.EQ.1 .AND. .NOT.trfcon ) THEN
500  CALL clacpy( uplo, n, n, afac, lda, ainv, lda )
501  srnamt = 'CSYTRI_ROOK'
502  CALL csytri_rook( uplo, n, ainv, lda, iwork, work,
503  $ info )
504 *
505 * Check error code from CSYTRI_ROOK and handle error.
506 *
507  IF( info.NE.0 )
508  $ CALL alaerh( path, 'CSYTRI_ROOK', info, -1,
509  $ uplo, n, n, -1, -1, -1, imat,
510  $ nfail, nerrs, nout )
511 *
512 * Compute the residual for a symmetric matrix times
513 * its inverse.
514 *
515  CALL csyt03( uplo, n, a, lda, ainv, lda, work, lda,
516  $ rwork, rcondc, result( 2 ) )
517  nt = 2
518  END IF
519 *
520 * Print information about the tests that did not pass
521 * the threshold.
522 *
523  DO 110 k = 1, nt
524  IF( result( k ).GE.thresh ) THEN
525  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
526  $ CALL alahd( nout, path )
527  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
528  $ result( k )
529  nfail = nfail + 1
530  END IF
531  110 CONTINUE
532  nrun = nrun + nt
533 *
534 *+ TEST 3
535 * Compute largest element in U or L
536 *
537  result( 3 ) = zero
538  stemp = zero
539 *
540  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) ) /
541  $ ( one-alpha )
542 *
543  IF( iuplo.EQ.1 ) THEN
544 *
545 * Compute largest element in U
546 *
547  k = n
548  120 CONTINUE
549  IF( k.LE.1 )
550  $ GO TO 130
551 *
552  IF( iwork( k ).GT.zero ) THEN
553 *
554 * Get max absolute value from elements
555 * in column k in in U
556 *
557  stemp = clange( 'M', k-1, 1,
558  $ afac( ( k-1 )*lda+1 ), lda, rwork )
559  ELSE
560 *
561 * Get max absolute value from elements
562 * in columns k and k-1 in U
563 *
564  stemp = clange( 'M', k-2, 2,
565  $ afac( ( k-2 )*lda+1 ), lda, rwork )
566  k = k - 1
567 *
568  END IF
569 *
570 * STEMP should be bounded by CONST
571 *
572  stemp = stemp - const + thresh
573  IF( stemp.GT.result( 3 ) )
574  $ result( 3 ) = stemp
575 *
576  k = k - 1
577 *
578  GO TO 120
579  130 CONTINUE
580 *
581  ELSE
582 *
583 * Compute largest element in L
584 *
585  k = 1
586  140 CONTINUE
587  IF( k.GE.n )
588  $ GO TO 150
589 *
590  IF( iwork( k ).GT.zero ) THEN
591 *
592 * Get max absolute value from elements
593 * in column k in in L
594 *
595  stemp = clange( 'M', n-k, 1,
596  $ afac( ( k-1 )*lda+k+1 ), lda, rwork )
597  ELSE
598 *
599 * Get max absolute value from elements
600 * in columns k and k+1 in L
601 *
602  stemp = clange( 'M', n-k-1, 2,
603  $ afac( ( k-1 )*lda+k+2 ), lda, rwork )
604  k = k + 1
605 *
606  END IF
607 *
608 * STEMP should be bounded by CONST
609 *
610  stemp = stemp - const + thresh
611  IF( stemp.GT.result( 3 ) )
612  $ result( 3 ) = stemp
613 *
614  k = k + 1
615 *
616  GO TO 140
617  150 CONTINUE
618  END IF
619 *
620 *
621 *+ TEST 4
622 * Compute largest 2-Norm (condition number)
623 * of 2-by-2 diag blocks
624 *
625  result( 4 ) = zero
626  stemp = zero
627 *
628  const = ( ( alpha**2-one ) / ( alpha**2-onehalf ) )*
629  $ ( ( one + alpha ) / ( one - alpha ) )
630 *
631  IF( iuplo.EQ.1 ) THEN
632 *
633 * Loop backward for UPLO = 'U'
634 *
635  k = n
636  160 CONTINUE
637  IF( k.LE.1 )
638  $ GO TO 170
639 *
640  IF( iwork( k ).LT.zero ) THEN
641 *
642 * Get the two singular values
643 * (real and non-negative) of a 2-by-2 block,
644 * store them in RWORK array
645 *
646  block( 1, 1 ) = afac( ( k-2 )*lda+k-1 )
647  block( 1, 2 ) = afac( (k-1)*lda+k-1 )
648  block( 2, 1 ) = block( 1, 2 )
649  block( 2, 2 ) = afac( (k-1)*lda+k )
650 *
651  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
652  $ cdummy, 1, cdummy, 1,
653  $ work, 6, rwork( 3 ), info )
654 *
655 *
656  sing_max = rwork( 1 )
657  sing_min = rwork( 2 )
658 *
659  stemp = sing_max / sing_min
660 *
661 * STEMP should be bounded by CONST
662 *
663  stemp = stemp - const + thresh
664  IF( stemp.GT.result( 4 ) )
665  $ result( 4 ) = stemp
666  k = k - 1
667 *
668  END IF
669 *
670  k = k - 1
671 *
672  GO TO 160
673  170 CONTINUE
674 *
675  ELSE
676 *
677 * Loop forward for UPLO = 'L'
678 *
679  k = 1
680  180 CONTINUE
681  IF( k.GE.n )
682  $ GO TO 190
683 *
684  IF( iwork( k ).LT.zero ) THEN
685 *
686 * Get the two singular values
687 * (real and non-negative) of a 2-by-2 block,
688 * store them in RWORK array
689 *
690  block( 1, 1 ) = afac( ( k-1 )*lda+k )
691  block( 2, 1 ) = afac( ( k-1 )*lda+k+1 )
692  block( 1, 2 ) = block( 2, 1 )
693  block( 2, 2 ) = afac( k*lda+k+1 )
694 *
695  CALL cgesvd( 'N', 'N', 2, 2, block, 2, rwork,
696  $ cdummy, 1, cdummy, 1,
697  $ work, 6, rwork(3), info )
698 *
699  sing_max = rwork( 1 )
700  sing_min = rwork( 2 )
701 *
702  stemp = sing_max / sing_min
703 *
704 * STEMP should be bounded by CONST
705 *
706  stemp = stemp - const + thresh
707  IF( stemp.GT.result( 4 ) )
708  $ result( 4 ) = stemp
709  k = k + 1
710 *
711  END IF
712 *
713  k = k + 1
714 *
715  GO TO 180
716  190 CONTINUE
717  END IF
718 *
719 * Print information about the tests that did not pass
720 * the threshold.
721 *
722  DO 200 k = 3, 4
723  IF( result( k ).GE.thresh ) THEN
724  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
725  $ CALL alahd( nout, path )
726  WRITE( nout, fmt = 9999 )uplo, n, nb, imat, k,
727  $ result( k )
728  nfail = nfail + 1
729  END IF
730  200 CONTINUE
731  nrun = nrun + 2
732 *
733 * Skip the other tests if this is not the first block
734 * size.
735 *
736  IF( inb.GT.1 )
737  $ GO TO 240
738 *
739 * Do only the condition estimate if INFO is not 0.
740 *
741  IF( trfcon ) THEN
742  rcondc = zero
743  GO TO 230
744  END IF
745 *
746 * Do for each value of NRHS in NSVAL.
747 *
748  DO 220 irhs = 1, nns
749  nrhs = nsval( irhs )
750 *
751 *+ TEST 5 ( Using TRS_ROOK)
752 * Solve and compute residual for A * X = B.
753 *
754 * Choose a set of NRHS random solution vectors
755 * stored in XACT and set up the right hand side B
756 *
757  srnamt = 'CLARHS'
758  CALL clarhs( matpath, xtype, uplo, ' ', n, n,
759  $ kl, ku, nrhs, a, lda, xact, lda,
760  $ b, lda, iseed, info )
761  CALL clacpy( 'Full', n, nrhs, b, lda, x, lda )
762 *
763  srnamt = 'CSYTRS_ROOK'
764  CALL csytrs_rook( uplo, n, nrhs, afac, lda, iwork,
765  $ x, lda, info )
766 *
767 * Check error code from CSYTRS_ROOK and handle error.
768 *
769  IF( info.NE.0 )
770  $ CALL alaerh( path, 'CSYTRS_ROOK', info, 0,
771  $ uplo, n, n, -1, -1, nrhs, imat,
772  $ nfail, nerrs, nout )
773 *
774  CALL clacpy( 'Full', n, nrhs, b, lda, work, lda )
775 *
776 * Compute the residual for the solution
777 *
778  CALL csyt02( uplo, n, nrhs, a, lda, x, lda, work,
779  $ lda, rwork, result( 5 ) )
780 *
781 *+ TEST 6
782 * Check solution from generated exact solution.
783 *
784  CALL cget04( n, nrhs, x, lda, xact, lda, rcondc,
785  $ result( 6 ) )
786 *
787 * Print information about the tests that did not pass
788 * the threshold.
789 *
790  DO 210 k = 5, 6
791  IF( result( k ).GE.thresh ) THEN
792  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
793  $ CALL alahd( nout, path )
794  WRITE( nout, fmt = 9998 )uplo, n, nrhs,
795  $ imat, k, result( k )
796  nfail = nfail + 1
797  END IF
798  210 CONTINUE
799  nrun = nrun + 2
800 *
801 * End do for each value of NRHS in NSVAL.
802 *
803  220 CONTINUE
804 *
805 *+ TEST 7
806 * Get an estimate of RCOND = 1/CNDNUM.
807 *
808  230 CONTINUE
809  anorm = clansy( '1', uplo, n, a, lda, rwork )
810  srnamt = 'CSYCON_ROOK'
811  CALL csycon_rook( uplo, n, afac, lda, iwork, anorm,
812  $ rcond, work, info )
813 *
814 * Check error code from CSYCON_ROOK and handle error.
815 *
816  IF( info.NE.0 )
817  $ CALL alaerh( path, 'CSYCON_ROOK', info, 0,
818  $ uplo, n, n, -1, -1, -1, imat,
819  $ nfail, nerrs, nout )
820 *
821 * Compute the test ratio to compare values of RCOND
822 *
823  result( 7 ) = sget06( rcond, rcondc )
824 *
825 * Print information about the tests that did not pass
826 * the threshold.
827 *
828  IF( result( 7 ).GE.thresh ) THEN
829  IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
830  $ CALL alahd( nout, path )
831  WRITE( nout, fmt = 9997 )uplo, n, imat, 7,
832  $ result( 7 )
833  nfail = nfail + 1
834  END IF
835  nrun = nrun + 1
836  240 CONTINUE
837 *
838  250 CONTINUE
839  260 CONTINUE
840  270 CONTINUE
841 *
842 * Print a summary of the results.
843 *
844  CALL alasum( path, nout, nfail, nrun, nerrs )
845 *
846  9999 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NB =', i4, ', type ',
847  $ i2, ', test ', i2, ', ratio =', g12.5 )
848  9998 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ', NRHS=', i3, ', type ',
849  $ i2, ', test(', i2, ') =', g12.5 )
850  9997 FORMAT( ' UPLO = ''', a1, ''', N =', i5, ',', 10x, ' type ', i2,
851  $ ', test(', i2, ') =', g12.5 )
852  RETURN
853 *
854 * End of CCHKSY_ROOK
855 *
856  END
subroutine csytri_rook(UPLO, N, A, LDA, IPIV, WORK, INFO)
CSYTRI_ROOK
Definition: csytri_rook.f:131
subroutine alahd(IOUNIT, PATH)
ALAHD
Definition: alahd.f:95
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
Definition: alaerh.f:149
subroutine clatsy(UPLO, N, X, LDX, ISEED)
CLATSY
Definition: clatsy.f:91
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
Definition: clarhs.f:211
subroutine csyt02(UPLO, N, NRHS, A, LDA, X, LDX, B, LDB, RWORK, RESID)
CSYT02
Definition: csyt02.f:129
subroutine cgesvd(JOBU, JOBVT, M, N, A, LDA, S, U, LDU, VT, LDVT, WORK, LWORK, RWORK, INFO)
CGESVD computes the singular value decomposition (SVD) for GE matrices
Definition: cgesvd.f:216
subroutine cerrsy(PATH, NUNIT)
CERRSY
Definition: cerrsy.f:57
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
Definition: xlaenv.f:83
subroutine csytrs_rook(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CSYTRS_ROOK
Definition: csytrs_rook.f:138
subroutine csyt03(UPLO, N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK, RCOND, RESID)
CSYT03
Definition: csyt03.f:128
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine csytrf_rook(UPLO, N, A, LDA, IPIV, WORK, LWORK, INFO)
CSYTRF_ROOK
Definition: csytrf_rook.f:210
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
Definition: clacpy.f:105
subroutine csycon_rook(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CSYCON_ROOK
Definition: csycon_rook.f:141
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
Definition: clatb4.f:123
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
Definition: cget04.f:104
subroutine cchksy_rook(DOTYPE, NN, NVAL, NNB, NBVAL, NNS, NSVAL, THRESH, TSTERR, NMAX, A, AFAC, AINV, B, X, XACT, WORK, RWORK, IWORK, NOUT)
CCHKSY_ROOK
Definition: cchksy_rook.f:174
subroutine csyt01_rook(UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC, RWORK, RESID)
CSYT01_ROOK
Definition: csyt01_rook.f:127
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75