LAPACK  3.6.1 LAPACK: Linear Algebra PACKage
sckgqr.f
Go to the documentation of this file.
1 *> \brief \b SCKGQR
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE SCKGQR( NM, MVAL, NP, PVAL, NN, NVAL, NMATS, ISEED,
12 * THRESH, NMAX, A, AF, AQ, AR, TAUA, B, BF, BZ,
13 * BT, BWK, TAUB, WORK, RWORK, NIN, NOUT, INFO )
14 *
15 * .. Scalar Arguments ..
16 * INTEGER INFO, NIN, NM, NMATS, NMAX, NN, NOUT, NP
17 * REAL THRESH
18 * ..
19 * .. Array Arguments ..
20 * INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ), PVAL( * )
21 * REAL A( * ), AF( * ), AQ( * ), AR( * ), B( * ),
22 * \$ BF( * ), BT( * ), BWK( * ), BZ( * ),
23 * \$ RWORK( * ), TAUA( * ), TAUB( * ), WORK( * )
24 * ..
25 *
26 *
27 *> \par Purpose:
28 * =============
29 *>
30 *> \verbatim
31 *>
32 *> SCKGQR tests
33 *> SGGQRF: GQR factorization for N-by-M matrix A and N-by-P matrix B,
34 *> SGGRQF: GRQ factorization for M-by-N matrix A and P-by-N matrix B.
35 *> \endverbatim
36 *
37 * Arguments:
38 * ==========
39 *
40 *> \param[in] NM
41 *> \verbatim
42 *> NM is INTEGER
43 *> The number of values of M contained in the vector MVAL.
44 *> \endverbatim
45 *>
46 *> \param[in] MVAL
47 *> \verbatim
48 *> MVAL is INTEGER array, dimension (NM)
49 *> The values of the matrix row(column) dimension M.
50 *> \endverbatim
51 *>
52 *> \param[in] NP
53 *> \verbatim
54 *> NP is INTEGER
55 *> The number of values of P contained in the vector PVAL.
56 *> \endverbatim
57 *>
58 *> \param[in] PVAL
59 *> \verbatim
60 *> PVAL is INTEGER array, dimension (NP)
61 *> The values of the matrix row(column) dimension P.
62 *> \endverbatim
63 *>
64 *> \param[in] NN
65 *> \verbatim
66 *> NN is INTEGER
67 *> The number of values of N contained in the vector NVAL.
68 *> \endverbatim
69 *>
70 *> \param[in] NVAL
71 *> \verbatim
72 *> NVAL is INTEGER array, dimension (NN)
73 *> The values of the matrix column(row) dimension N.
74 *> \endverbatim
75 *>
76 *> \param[in] NMATS
77 *> \verbatim
78 *> NMATS is INTEGER
79 *> The number of matrix types to be tested for each combination
80 *> of matrix dimensions. If NMATS >= NTYPES (the maximum
81 *> number of matrix types), then all the different types are
82 *> generated for testing. If NMATS < NTYPES, another input line
83 *> is read to get the numbers of the matrix types to be used.
84 *> \endverbatim
85 *>
86 *> \param[in,out] ISEED
87 *> \verbatim
88 *> ISEED is INTEGER array, dimension (4)
89 *> On entry, the seed of the random number generator. The array
90 *> elements should be between 0 and 4095, otherwise they will be
91 *> reduced mod 4096, and ISEED(4) must be odd.
92 *> On exit, the next seed in the random number sequence after
93 *> all the test matrices have been generated.
94 *> \endverbatim
95 *>
96 *> \param[in] THRESH
97 *> \verbatim
98 *> THRESH is REAL
99 *> The threshold value for the test ratios. A result is
100 *> included in the output file if RESULT >= THRESH. To have
101 *> every test ratio printed, use THRESH = 0.
102 *> \endverbatim
103 *>
104 *> \param[in] NMAX
105 *> \verbatim
106 *> NMAX is INTEGER
107 *> The maximum value permitted for M or N, used in dimensioning
108 *> the work arrays.
109 *> \endverbatim
110 *>
111 *> \param[out] A
112 *> \verbatim
113 *> A is REAL array, dimension (NMAX*NMAX)
114 *> \endverbatim
115 *>
116 *> \param[out] AF
117 *> \verbatim
118 *> AF is REAL array, dimension (NMAX*NMAX)
119 *> \endverbatim
120 *>
121 *> \param[out] AQ
122 *> \verbatim
123 *> AQ is REAL array, dimension (NMAX*NMAX)
124 *> \endverbatim
125 *>
126 *> \param[out] AR
127 *> \verbatim
128 *> AR is REAL array, dimension (NMAX*NMAX)
129 *> \endverbatim
130 *>
131 *> \param[out] TAUA
132 *> \verbatim
133 *> TAUA is REAL array, dimension (NMAX)
134 *> \endverbatim
135 *>
136 *> \param[out] B
137 *> \verbatim
138 *> B is REAL array, dimension (NMAX*NMAX)
139 *> \endverbatim
140 *>
141 *> \param[out] BF
142 *> \verbatim
143 *> BF is REAL array, dimension (NMAX*NMAX)
144 *> \endverbatim
145 *>
146 *> \param[out] BZ
147 *> \verbatim
148 *> BZ is REAL array, dimension (NMAX*NMAX)
149 *> \endverbatim
150 *>
151 *> \param[out] BT
152 *> \verbatim
153 *> BT is REAL array, dimension (NMAX*NMAX)
154 *> \endverbatim
155 *>
156 *> \param[out] BWK
157 *> \verbatim
158 *> BWK is REAL array, dimension (NMAX*NMAX)
159 *> \endverbatim
160 *>
161 *> \param[out] TAUB
162 *> \verbatim
163 *> TAUB is REAL array, dimension (NMAX)
164 *> \endverbatim
165 *>
166 *> \param[out] WORK
167 *> \verbatim
168 *> WORK is REAL array, dimension (NMAX*NMAX)
169 *> \endverbatim
170 *>
171 *> \param[out] RWORK
172 *> \verbatim
173 *> RWORK is REAL array, dimension (NMAX)
174 *> \endverbatim
175 *>
176 *> \param[in] NIN
177 *> \verbatim
178 *> NIN is INTEGER
179 *> The unit number for input.
180 *> \endverbatim
181 *>
182 *> \param[in] NOUT
183 *> \verbatim
184 *> NOUT is INTEGER
185 *> The unit number for output.
186 *> \endverbatim
187 *>
188 *> \param[out] INFO
189 *> \verbatim
190 *> INFO is INTEGER
191 *> = 0 : successful exit
192 *> > 0 : If SLATMS returns an error code, the absolute value
193 *> of it is returned.
194 *> \endverbatim
195 *
196 * Authors:
197 * ========
198 *
199 *> \author Univ. of Tennessee
200 *> \author Univ. of California Berkeley
201 *> \author Univ. of Colorado Denver
202 *> \author NAG Ltd.
203 *
204 *> \date November 2011
205 *
206 *> \ingroup single_eig
207 *
208 * =====================================================================
209  SUBROUTINE sckgqr( NM, MVAL, NP, PVAL, NN, NVAL, NMATS, ISEED,
210  \$ thresh, nmax, a, af, aq, ar, taua, b, bf, bz,
211  \$ bt, bwk, taub, work, rwork, nin, nout, info )
212 *
213 * -- LAPACK test routine (version 3.4.0) --
214 * -- LAPACK is a software package provided by Univ. of Tennessee, --
215 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
216 * November 2011
217 *
218 * .. Scalar Arguments ..
219  INTEGER INFO, NIN, NM, NMATS, NMAX, NN, NOUT, NP
220  REAL THRESH
221 * ..
222 * .. Array Arguments ..
223  INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ), PVAL( * )
224  REAL A( * ), AF( * ), AQ( * ), AR( * ), B( * ),
225  \$ bf( * ), bt( * ), bwk( * ), bz( * ),
226  \$ rwork( * ), taua( * ), taub( * ), work( * )
227 * ..
228 *
229 * =====================================================================
230 *
231 * .. Parameters ..
232  INTEGER NTESTS
233  parameter ( ntests = 7 )
234  INTEGER NTYPES
235  parameter ( ntypes = 8 )
236 * ..
237 * .. Local Scalars ..
238  LOGICAL FIRSTT
239  CHARACTER DISTA, DISTB, TYPE
240  CHARACTER*3 PATH
241  INTEGER I, IINFO, IM, IMAT, IN, IP, KLA, KLB, KUA, KUB,
242  \$ lda, ldb, lwork, m, modea, modeb, n, nfail,
243  \$ nrun, nt, p
244  REAL ANORM, BNORM, CNDNMA, CNDNMB
245 * ..
246 * .. Local Arrays ..
247  LOGICAL DOTYPE( ntypes )
248  REAL RESULT( ntests )
249 * ..
250 * .. External Subroutines ..
251  EXTERNAL alahdg, alareq, alasum, sgqrts, sgrqts, slatb9,
252  \$ slatms
253 * ..
254 * .. Intrinsic Functions ..
255  INTRINSIC abs
256 * ..
257 * .. Executable Statements ..
258 *
259 * Initialize constants.
260 *
261  path( 1: 3 ) = 'GQR'
262  info = 0
263  nrun = 0
264  nfail = 0
265  firstt = .true.
266  CALL alareq( path, nmats, dotype, ntypes, nin, nout )
267  lda = nmax
268  ldb = nmax
269  lwork = nmax*nmax
270 *
271 * Do for each value of M in MVAL.
272 *
273  DO 60 im = 1, nm
274  m = mval( im )
275 *
276 * Do for each value of P in PVAL.
277 *
278  DO 50 ip = 1, np
279  p = pval( ip )
280 *
281 * Do for each value of N in NVAL.
282 *
283  DO 40 in = 1, nn
284  n = nval( in )
285 *
286  DO 30 imat = 1, ntypes
287 *
288 * Do the tests only if DOTYPE( IMAT ) is true.
289 *
290  IF( .NOT.dotype( imat ) )
291  \$ GO TO 30
292 *
293 * Test SGGRQF
294 *
295 * Set up parameters with SLATB9 and generate test
296 * matrices A and B with SLATMS.
297 *
298  CALL slatb9( 'GRQ', imat, m, p, n, TYPE, KLA, KUA,
299  \$ klb, kub, anorm, bnorm, modea, modeb,
300  \$ cndnma, cndnmb, dista, distb )
301 *
302 * Generate M by N matrix A
303 *
304  CALL slatms( m, n, dista, iseed, TYPE, RWORK, MODEA,
305  \$ cndnma, anorm, kla, kua, 'No packing', a,
306  \$ lda, work, iinfo )
307  IF( iinfo.NE.0 ) THEN
308  WRITE( nout, fmt = 9999 )iinfo
309  info = abs( iinfo )
310  GO TO 30
311  END IF
312 *
313 * Generate P by N matrix B
314 *
315  CALL slatms( p, n, distb, iseed, TYPE, RWORK, MODEB,
316  \$ cndnmb, bnorm, klb, kub, 'No packing', b,
317  \$ ldb, work, iinfo )
318  IF( iinfo.NE.0 ) THEN
319  WRITE( nout, fmt = 9999 )iinfo
320  info = abs( iinfo )
321  GO TO 30
322  END IF
323 *
324  nt = 4
325 *
326  CALL sgrqts( m, p, n, a, af, aq, ar, lda, taua, b, bf,
327  \$ bz, bt, bwk, ldb, taub, work, lwork,
328  \$ rwork, result )
329 *
330 * Print information about the tests that did not
331 * pass the threshold.
332 *
333  DO 10 i = 1, nt
334  IF( result( i ).GE.thresh ) THEN
335  IF( nfail.EQ.0 .AND. firstt ) THEN
336  firstt = .false.
337  CALL alahdg( nout, 'GRQ' )
338  END IF
339  WRITE( nout, fmt = 9998 )m, p, n, imat, i,
340  \$ result( i )
341  nfail = nfail + 1
342  END IF
343  10 CONTINUE
344  nrun = nrun + nt
345 *
346 * Test SGGQRF
347 *
348 * Set up parameters with SLATB9 and generate test
349 * matrices A and B with SLATMS.
350 *
351  CALL slatb9( 'GQR', imat, m, p, n, TYPE, KLA, KUA,
352  \$ klb, kub, anorm, bnorm, modea, modeb,
353  \$ cndnma, cndnmb, dista, distb )
354 *
355 * Generate N-by-M matrix A
356 *
357  CALL slatms( n, m, dista, iseed, TYPE, RWORK, MODEA,
358  \$ cndnma, anorm, kla, kua, 'No packing', a,
359  \$ lda, work, iinfo )
360  IF( iinfo.NE.0 ) THEN
361  WRITE( nout, fmt = 9999 )iinfo
362  info = abs( iinfo )
363  GO TO 30
364  END IF
365 *
366 * Generate N-by-P matrix B
367 *
368  CALL slatms( n, p, distb, iseed, TYPE, RWORK, MODEA,
369  \$ cndnma, bnorm, klb, kub, 'No packing', b,
370  \$ ldb, work, iinfo )
371  IF( iinfo.NE.0 ) THEN
372  WRITE( nout, fmt = 9999 )iinfo
373  info = abs( iinfo )
374  GO TO 30
375  END IF
376 *
377  nt = 4
378 *
379  CALL sgqrts( n, m, p, a, af, aq, ar, lda, taua, b, bf,
380  \$ bz, bt, bwk, ldb, taub, work, lwork,
381  \$ rwork, result )
382 *
383 * Print information about the tests that did not
384 * pass the threshold.
385 *
386  DO 20 i = 1, nt
387  IF( result( i ).GE.thresh ) THEN
388  IF( nfail.EQ.0 .AND. firstt ) THEN
389  firstt = .false.
390  CALL alahdg( nout, path )
391  END IF
392  WRITE( nout, fmt = 9997 )n, m, p, imat, i,
393  \$ result( i )
394  nfail = nfail + 1
395  END IF
396  20 CONTINUE
397  nrun = nrun + nt
398 *
399  30 CONTINUE
400  40 CONTINUE
401  50 CONTINUE
402  60 CONTINUE
403 *
404 * Print a summary of the results.
405 *
406  CALL alasum( path, nout, nfail, nrun, 0 )
407 *
408  9999 FORMAT( ' SLATMS in SCKGQR: INFO = ', i5 )
409  9998 FORMAT( ' M=', i4, ' P=', i4, ', N=', i4, ', type ', i2,
410  \$ ', test ', i2, ', ratio=', g13.6 )
411  9997 FORMAT( ' N=', i4, ' M=', i4, ', P=', i4, ', type ', i2,
412  \$ ', test ', i2, ', ratio=', g13.6 )
413  RETURN
414 *
415 * End of SCKGQR
416 *
417  END
subroutine sckgqr(NM, MVAL, NP, PVAL, NN, NVAL, NMATS, ISEED, THRESH, NMAX, A, AF, AQ, AR, TAUA, B, BF, BZ, BT, BWK, TAUB, WORK, RWORK, NIN, NOUT, INFO)
SCKGQR
Definition: sckgqr.f:212
subroutine alareq(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)
ALAREQ
Definition: alareq.f:92
subroutine slatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
SLATMS
Definition: slatms.f:323
subroutine slatb9(PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, DISTA, DISTB)
SLATB9
Definition: slatb9.f:172
subroutine sgqrts(N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT)
SGQRTS
Definition: sgqrts.f:178
subroutine sgrqts(M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT)
SGRQTS
Definition: sgrqts.f:179
subroutine alahdg(IOUNIT, PATH)
ALAHDG
Definition: alahdg.f:64
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75