124 SUBROUTINE cgtt02( TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB,
134 INTEGER LDB, LDX, N, NRHS
138 COMPLEX B( ldb, * ), D( * ), DL( * ), DU( * ),
146 parameter ( one = 1.0e+0, zero = 0.0e+0 )
150 REAL ANORM, BNORM, EPS, XNORM
154 REAL CLANGT, SCASUM, SLAMCH
155 EXTERNAL lsame, clangt, scasum, slamch
168 IF( n.LE.0 .OR. nrhs.EQ.0 )
174 IF( lsame( trans,
'N' ) )
THEN
175 anorm = clangt(
'1', n, dl, d, du )
177 anorm = clangt(
'I', n, dl, d, du )
182 eps = slamch(
'Epsilon' )
183 IF( anorm.LE.zero )
THEN
190 CALL clagtm( trans, n, nrhs, -one, dl, d, du, x, ldx, one, b,
194 bnorm = scasum( n, b( 1, j ), 1 )
195 xnorm = scasum( n, x( 1, j ), 1 )
196 IF( xnorm.LE.zero )
THEN
199 resid = max( resid, ( ( bnorm / anorm ) / xnorm ) / eps )
subroutine cgtt02(TRANS, N, NRHS, DL, D, DU, X, LDX, B, LDB, RESID)
CGTT02
subroutine clagtm(TRANS, N, NRHS, ALPHA, DL, D, DU, X, LDX, BETA, B, LDB)
CLAGTM performs a matrix-matrix product of the form C = αAB+βC, where A is a tridiagonal matrix...