LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
cckgqr.f
Go to the documentation of this file.
1 *> \brief \b CCKGQR
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 * Definition:
9 * ===========
10 *
11 * SUBROUTINE CCKGQR( NM, MVAL, NP, PVAL, NN, NVAL, NMATS, ISEED,
12 * THRESH, NMAX, A, AF, AQ, AR, TAUA, B, BF, BZ,
13 * BT, BWK, TAUB, WORK, RWORK, NIN, NOUT, INFO )
14 *
15 * .. Scalar Arguments ..
16 * INTEGER INFO, NIN, NM, NMATS, NMAX, NN, NOUT, NP
17 * REAL THRESH
18 * ..
19 * .. Array Arguments ..
20 * INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ), PVAL( * )
21 * REAL RWORK( * )
22 * COMPLEX A( * ), AF( * ), AQ( * ), AR( * ), B( * ),
23 * $ BF( * ), BT( * ), BWK( * ), BZ( * ), TAUA( * ),
24 * $ TAUB( * ), WORK( * )
25 * ..
26 *
27 *
28 *> \par Purpose:
29 * =============
30 *>
31 *> \verbatim
32 *>
33 *> CCKGQR tests
34 *> CGGQRF: GQR factorization for N-by-M matrix A and N-by-P matrix B,
35 *> CGGRQF: GRQ factorization for M-by-N matrix A and P-by-N matrix B.
36 *> \endverbatim
37 *
38 * Arguments:
39 * ==========
40 *
41 *> \param[in] NM
42 *> \verbatim
43 *> NM is INTEGER
44 *> The number of values of M contained in the vector MVAL.
45 *> \endverbatim
46 *>
47 *> \param[in] MVAL
48 *> \verbatim
49 *> MVAL is INTEGER array, dimension (NM)
50 *> The values of the matrix row(column) dimension M.
51 *> \endverbatim
52 *>
53 *> \param[in] NP
54 *> \verbatim
55 *> NP is INTEGER
56 *> The number of values of P contained in the vector PVAL.
57 *> \endverbatim
58 *>
59 *> \param[in] PVAL
60 *> \verbatim
61 *> PVAL is INTEGER array, dimension (NP)
62 *> The values of the matrix row(column) dimension P.
63 *> \endverbatim
64 *>
65 *> \param[in] NN
66 *> \verbatim
67 *> NN is INTEGER
68 *> The number of values of N contained in the vector NVAL.
69 *> \endverbatim
70 *>
71 *> \param[in] NVAL
72 *> \verbatim
73 *> NVAL is INTEGER array, dimension (NN)
74 *> The values of the matrix column(row) dimension N.
75 *> \endverbatim
76 *>
77 *> \param[in] NMATS
78 *> \verbatim
79 *> NMATS is INTEGER
80 *> The number of matrix types to be tested for each combination
81 *> of matrix dimensions. If NMATS >= NTYPES (the maximum
82 *> number of matrix types), then all the different types are
83 *> generated for testing. If NMATS < NTYPES, another input line
84 *> is read to get the numbers of the matrix types to be used.
85 *> \endverbatim
86 *>
87 *> \param[in,out] ISEED
88 *> \verbatim
89 *> ISEED is INTEGER array, dimension (4)
90 *> On entry, the seed of the random number generator. The array
91 *> elements should be between 0 and 4095, otherwise they will be
92 *> reduced mod 4096, and ISEED(4) must be odd.
93 *> On exit, the next seed in the random number sequence after
94 *> all the test matrices have been generated.
95 *> \endverbatim
96 *>
97 *> \param[in] THRESH
98 *> \verbatim
99 *> THRESH is REAL
100 *> The threshold value for the test ratios. A result is
101 *> included in the output file if RESULT >= THRESH. To have
102 *> every test ratio printed, use THRESH = 0.
103 *> \endverbatim
104 *>
105 *> \param[in] NMAX
106 *> \verbatim
107 *> NMAX is INTEGER
108 *> The maximum value permitted for M or N, used in dimensioning
109 *> the work arrays.
110 *> \endverbatim
111 *>
112 *> \param[out] A
113 *> \verbatim
114 *> A is COMPLEX array, dimension (NMAX*NMAX)
115 *> \endverbatim
116 *>
117 *> \param[out] AF
118 *> \verbatim
119 *> AF is COMPLEX array, dimension (NMAX*NMAX)
120 *> \endverbatim
121 *>
122 *> \param[out] AQ
123 *> \verbatim
124 *> AQ is COMPLEX array, dimension (NMAX*NMAX)
125 *> \endverbatim
126 *>
127 *> \param[out] AR
128 *> \verbatim
129 *> AR is COMPLEX array, dimension (NMAX*NMAX)
130 *> \endverbatim
131 *>
132 *> \param[out] TAUA
133 *> \verbatim
134 *> TAUA is COMPLEX array, dimension (NMAX)
135 *> \endverbatim
136 *>
137 *> \param[out] B
138 *> \verbatim
139 *> B is COMPLEX array, dimension (NMAX*NMAX)
140 *> \endverbatim
141 *>
142 *> \param[out] BF
143 *> \verbatim
144 *> BF is COMPLEX array, dimension (NMAX*NMAX)
145 *> \endverbatim
146 *>
147 *> \param[out] BZ
148 *> \verbatim
149 *> BZ is COMPLEX array, dimension (NMAX*NMAX)
150 *> \endverbatim
151 *>
152 *> \param[out] BT
153 *> \verbatim
154 *> BT is COMPLEX array, dimension (NMAX*NMAX)
155 *> \endverbatim
156 *>
157 *> \param[out] BWK
158 *> \verbatim
159 *> BWK is COMPLEX array, dimension (NMAX*NMAX)
160 *> \endverbatim
161 *>
162 *> \param[out] TAUB
163 *> \verbatim
164 *> TAUB is COMPLEX array, dimension (NMAX)
165 *> \endverbatim
166 *>
167 *> \param[out] WORK
168 *> \verbatim
169 *> WORK is COMPLEX array, dimension (NMAX*NMAX)
170 *> \endverbatim
171 *>
172 *> \param[out] RWORK
173 *> \verbatim
174 *> RWORK is REAL array, dimension (NMAX)
175 *> \endverbatim
176 *>
177 *> \param[in] NIN
178 *> \verbatim
179 *> NIN is INTEGER
180 *> The unit number for input.
181 *> \endverbatim
182 *>
183 *> \param[in] NOUT
184 *> \verbatim
185 *> NOUT is INTEGER
186 *> The unit number for output.
187 *> \endverbatim
188 *>
189 *> \param[out] INFO
190 *> \verbatim
191 *> INFO is INTEGER
192 *> = 0 : successful exit
193 *> > 0 : If CLATMS returns an error code, the absolute value
194 *> of it is returned.
195 *> \endverbatim
196 *
197 * Authors:
198 * ========
199 *
200 *> \author Univ. of Tennessee
201 *> \author Univ. of California Berkeley
202 *> \author Univ. of Colorado Denver
203 *> \author NAG Ltd.
204 *
205 *> \date November 2011
206 *
207 *> \ingroup complex_eig
208 *
209 * =====================================================================
210  SUBROUTINE cckgqr( NM, MVAL, NP, PVAL, NN, NVAL, NMATS, ISEED,
211  $ thresh, nmax, a, af, aq, ar, taua, b, bf, bz,
212  $ bt, bwk, taub, work, rwork, nin, nout, info )
213 *
214 * -- LAPACK test routine (version 3.4.0) --
215 * -- LAPACK is a software package provided by Univ. of Tennessee, --
216 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
217 * November 2011
218 *
219 * .. Scalar Arguments ..
220  INTEGER INFO, NIN, NM, NMATS, NMAX, NN, NOUT, NP
221  REAL THRESH
222 * ..
223 * .. Array Arguments ..
224  INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ), PVAL( * )
225  REAL RWORK( * )
226  COMPLEX A( * ), AF( * ), AQ( * ), AR( * ), B( * ),
227  $ bf( * ), bt( * ), bwk( * ), bz( * ), taua( * ),
228  $ taub( * ), work( * )
229 * ..
230 *
231 * =====================================================================
232 *
233 * .. Parameters ..
234  INTEGER NTESTS
235  parameter ( ntests = 7 )
236  INTEGER NTYPES
237  parameter ( ntypes = 8 )
238 * ..
239 * .. Local Scalars ..
240  LOGICAL FIRSTT
241  CHARACTER DISTA, DISTB, TYPE
242  CHARACTER*3 PATH
243  INTEGER I, IINFO, IM, IMAT, IN, IP, KLA, KLB, KUA, KUB,
244  $ lda, ldb, lwork, m, modea, modeb, n, nfail,
245  $ nrun, nt, p
246  REAL ANORM, BNORM, CNDNMA, CNDNMB
247 * ..
248 * .. Local Arrays ..
249  LOGICAL DOTYPE( ntypes )
250  REAL RESULT( ntests )
251 * ..
252 * .. External Subroutines ..
253  EXTERNAL alahdg, alareq, alasum, cgqrts, cgrqts, clatms,
254  $ slatb9
255 * ..
256 * .. Intrinsic Functions ..
257  INTRINSIC abs
258 * ..
259 * .. Executable Statements ..
260 *
261 * Initialize constants.
262 *
263  path( 1: 3 ) = 'GQR'
264  info = 0
265  nrun = 0
266  nfail = 0
267  firstt = .true.
268  CALL alareq( path, nmats, dotype, ntypes, nin, nout )
269  lda = nmax
270  ldb = nmax
271  lwork = nmax*nmax
272 *
273 * Do for each value of M in MVAL.
274 *
275  DO 60 im = 1, nm
276  m = mval( im )
277 *
278 * Do for each value of P in PVAL.
279 *
280  DO 50 ip = 1, np
281  p = pval( ip )
282 *
283 * Do for each value of N in NVAL.
284 *
285  DO 40 in = 1, nn
286  n = nval( in )
287 *
288  DO 30 imat = 1, ntypes
289 *
290 * Do the tests only if DOTYPE( IMAT ) is true.
291 *
292  IF( .NOT.dotype( imat ) )
293  $ GO TO 30
294 *
295 * Test CGGRQF
296 *
297 * Set up parameters with SLATB9 and generate test
298 * matrices A and B with CLATMS.
299 *
300  CALL slatb9( 'GRQ', imat, m, p, n, TYPE, KLA, KUA,
301  $ klb, kub, anorm, bnorm, modea, modeb,
302  $ cndnma, cndnmb, dista, distb )
303 *
304  CALL clatms( m, n, dista, iseed, TYPE, RWORK, MODEA,
305  $ cndnma, anorm, kla, kua, 'No packing', a,
306  $ lda, work, iinfo )
307  IF( iinfo.NE.0 ) THEN
308  WRITE( nout, fmt = 9999 )iinfo
309  info = abs( iinfo )
310  GO TO 30
311  END IF
312 *
313  CALL clatms( p, n, distb, iseed, TYPE, RWORK, MODEB,
314  $ cndnmb, bnorm, klb, kub, 'No packing', b,
315  $ ldb, work, iinfo )
316  IF( iinfo.NE.0 ) THEN
317  WRITE( nout, fmt = 9999 )iinfo
318  info = abs( iinfo )
319  GO TO 30
320  END IF
321 *
322  nt = 4
323 *
324  CALL cgrqts( m, p, n, a, af, aq, ar, lda, taua, b, bf,
325  $ bz, bt, bwk, ldb, taub, work, lwork,
326  $ rwork, result )
327 *
328 * Print information about the tests that did not
329 * pass the threshold.
330 *
331  DO 10 i = 1, nt
332  IF( result( i ).GE.thresh ) THEN
333  IF( nfail.EQ.0 .AND. firstt ) THEN
334  firstt = .false.
335  CALL alahdg( nout, 'GRQ' )
336  END IF
337  WRITE( nout, fmt = 9998 )m, p, n, imat, i,
338  $ result( i )
339  nfail = nfail + 1
340  END IF
341  10 CONTINUE
342  nrun = nrun + nt
343 *
344 * Test CGGQRF
345 *
346 * Set up parameters with SLATB9 and generate test
347 * matrices A and B with CLATMS.
348 *
349  CALL slatb9( 'GQR', imat, m, p, n, TYPE, KLA, KUA,
350  $ klb, kub, anorm, bnorm, modea, modeb,
351  $ cndnma, cndnmb, dista, distb )
352 *
353  CALL clatms( n, m, dista, iseed, TYPE, RWORK, MODEA,
354  $ cndnma, anorm, kla, kua, 'No packing', a,
355  $ lda, work, iinfo )
356  IF( iinfo.NE.0 ) THEN
357  WRITE( nout, fmt = 9999 )iinfo
358  info = abs( iinfo )
359  GO TO 30
360  END IF
361 *
362  CALL clatms( n, p, distb, iseed, TYPE, RWORK, MODEA,
363  $ cndnma, bnorm, klb, kub, 'No packing', b,
364  $ ldb, work, iinfo )
365  IF( iinfo.NE.0 ) THEN
366  WRITE( nout, fmt = 9999 )iinfo
367  info = abs( iinfo )
368  GO TO 30
369  END IF
370 *
371  nt = 4
372 *
373  CALL cgqrts( n, m, p, a, af, aq, ar, lda, taua, b, bf,
374  $ bz, bt, bwk, ldb, taub, work, lwork,
375  $ rwork, result )
376 *
377 * Print information about the tests that did not
378 * pass the threshold.
379 *
380  DO 20 i = 1, nt
381  IF( result( i ).GE.thresh ) THEN
382  IF( nfail.EQ.0 .AND. firstt ) THEN
383  firstt = .false.
384  CALL alahdg( nout, path )
385  END IF
386  WRITE( nout, fmt = 9997 )n, m, p, imat, i,
387  $ result( i )
388  nfail = nfail + 1
389  END IF
390  20 CONTINUE
391  nrun = nrun + nt
392 *
393  30 CONTINUE
394  40 CONTINUE
395  50 CONTINUE
396  60 CONTINUE
397 *
398 * Print a summary of the results.
399 *
400  CALL alasum( path, nout, nfail, nrun, 0 )
401 *
402  9999 FORMAT( ' CLATMS in CCKGQR: INFO = ', i5 )
403  9998 FORMAT( ' M=', i4, ' P=', i4, ', N=', i4, ', type ', i2,
404  $ ', test ', i2, ', ratio=', g13.6 )
405  9997 FORMAT( ' N=', i4, ' M=', i4, ', P=', i4, ', type ', i2,
406  $ ', test ', i2, ', ratio=', g13.6 )
407  RETURN
408 *
409 * End of CCKGQR
410 *
411  END
subroutine alareq(PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT)
ALAREQ
Definition: alareq.f:92
subroutine slatb9(PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB, ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB, DISTA, DISTB)
SLATB9
Definition: slatb9.f:172
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
Definition: clatms.f:334
subroutine cgrqts(M, P, N, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT)
CGRQTS
Definition: cgrqts.f:178
subroutine cgqrts(N, M, P, A, AF, Q, R, LDA, TAUA, B, BF, Z, T, BWK, LDB, TAUB, WORK, LWORK, RWORK, RESULT)
CGQRTS
Definition: cgqrts.f:178
subroutine cckgqr(NM, MVAL, NP, PVAL, NN, NVAL, NMATS, ISEED, THRESH, NMAX, A, AF, AQ, AR, TAUA, B, BF, BZ, BT, BWK, TAUB, WORK, RWORK, NIN, NOUT, INFO)
CCKGQR
Definition: cckgqr.f:213
subroutine alahdg(IOUNIT, PATH)
ALAHDG
Definition: alahdg.f:64
subroutine alasum(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASUM
Definition: alasum.f:75