149 SUBROUTINE claqp2( M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2,
158 INTEGER LDA, M, N, OFFSET
162 REAL VN1( * ), VN2( * )
163 COMPLEX A( lda, * ), TAU( * ), WORK( * )
171 parameter ( zero = 0.0e+0, one = 1.0e+0,
172 $ cone = ( 1.0e+0, 0.0e+0 ) )
175 INTEGER I, ITEMP, J, MN, OFFPI, PVT
176 REAL TEMP, TEMP2, TOL3Z
183 INTRINSIC abs, conjg, max, min, sqrt
188 EXTERNAL isamax, scnrm2, slamch
192 mn = min( m-offset, n )
193 tol3z = sqrt(slamch(
'Epsilon'))
203 pvt = ( i-1 ) + isamax( n-i+1, vn1( i ), 1 )
206 CALL cswap( m, a( 1, pvt ), 1, a( 1, i ), 1 )
208 jpvt( pvt ) = jpvt( i )
210 vn1( pvt ) = vn1( i )
211 vn2( pvt ) = vn2( i )
216 IF( offpi.LT.m )
THEN
217 CALL clarfg( m-offpi+1, a( offpi, i ), a( offpi+1, i ), 1,
220 CALL clarfg( 1, a( m, i ), a( m, i ), 1, tau( i ) )
229 CALL clarf(
'Left', m-offpi+1, n-i, a( offpi, i ), 1,
230 $ conjg( tau( i ) ), a( offpi, i+1 ), lda,
238 IF( vn1( j ).NE.zero )
THEN
243 temp = one - ( abs( a( offpi, j ) ) / vn1( j ) )**2
244 temp = max( temp, zero )
245 temp2 = temp*( vn1( j ) / vn2( j ) )**2
246 IF( temp2 .LE. tol3z )
THEN
247 IF( offpi.LT.m )
THEN
248 vn1( j ) = scnrm2( m-offpi, a( offpi+1, j ), 1 )
255 vn1( j ) = vn1( j )*sqrt( temp )
subroutine claqp2(M, N, OFFSET, A, LDA, JPVT, TAU, VN1, VN2, WORK)
CLAQP2 computes a QR factorization with column pivoting of the matrix block.
subroutine clarf(SIDE, M, N, V, INCV, TAU, C, LDC, WORK)
CLARF applies an elementary reflector to a general rectangular matrix.
subroutine cswap(N, CX, INCX, CY, INCY)
CSWAP
subroutine clarfg(N, ALPHA, X, INCX, TAU)
CLARFG generates an elementary reflector (Householder matrix).