LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine clarfg ( integer  N,
complex  ALPHA,
complex, dimension( * )  X,
integer  INCX,
complex  TAU 
)

CLARFG generates an elementary reflector (Householder matrix).

Download CLARFG + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CLARFG generates a complex elementary reflector H of order n, such
 that

       H**H * ( alpha ) = ( beta ),   H**H * H = I.
              (   x   )   (   0  )

 where alpha and beta are scalars, with beta real, and x is an
 (n-1)-element complex vector. H is represented in the form

       H = I - tau * ( 1 ) * ( 1 v**H ) ,
                     ( v )

 where tau is a complex scalar and v is a complex (n-1)-element
 vector. Note that H is not hermitian.

 If the elements of x are all zero and alpha is real, then tau = 0
 and H is taken to be the unit matrix.

 Otherwise  1 <= real(tau) <= 2  and  abs(tau-1) <= 1 .
Parameters
[in]N
          N is INTEGER
          The order of the elementary reflector.
[in,out]ALPHA
          ALPHA is COMPLEX
          On entry, the value alpha.
          On exit, it is overwritten with the value beta.
[in,out]X
          X is COMPLEX array, dimension
                         (1+(N-2)*abs(INCX))
          On entry, the vector x.
          On exit, it is overwritten with the vector v.
[in]INCX
          INCX is INTEGER
          The increment between elements of X. INCX > 0.
[out]TAU
          TAU is COMPLEX
          The value tau.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
September 2012

Definition at line 108 of file clarfg.f.

108 *
109 * -- LAPACK auxiliary routine (version 3.4.2) --
110 * -- LAPACK is a software package provided by Univ. of Tennessee, --
111 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
112 * September 2012
113 *
114 * .. Scalar Arguments ..
115  INTEGER incx, n
116  COMPLEX alpha, tau
117 * ..
118 * .. Array Arguments ..
119  COMPLEX x( * )
120 * ..
121 *
122 * =====================================================================
123 *
124 * .. Parameters ..
125  REAL one, zero
126  parameter ( one = 1.0e+0, zero = 0.0e+0 )
127 * ..
128 * .. Local Scalars ..
129  INTEGER j, knt
130  REAL alphi, alphr, beta, rsafmn, safmin, xnorm
131 * ..
132 * .. External Functions ..
133  REAL scnrm2, slamch, slapy3
134  COMPLEX cladiv
135  EXTERNAL scnrm2, slamch, slapy3, cladiv
136 * ..
137 * .. Intrinsic Functions ..
138  INTRINSIC abs, aimag, cmplx, REAL, sign
139 * ..
140 * .. External Subroutines ..
141  EXTERNAL cscal, csscal
142 * ..
143 * .. Executable Statements ..
144 *
145  IF( n.LE.0 ) THEN
146  tau = zero
147  RETURN
148  END IF
149 *
150  xnorm = scnrm2( n-1, x, incx )
151  alphr = REAL( alpha )
152  alphi = aimag( alpha )
153 *
154  IF( xnorm.EQ.zero .AND. alphi.EQ.zero ) THEN
155 *
156 * H = I
157 *
158  tau = zero
159  ELSE
160 *
161 * general case
162 *
163  beta = -sign( slapy3( alphr, alphi, xnorm ), alphr )
164  safmin = slamch( 'S' ) / slamch( 'E' )
165  rsafmn = one / safmin
166 *
167  knt = 0
168  IF( abs( beta ).LT.safmin ) THEN
169 *
170 * XNORM, BETA may be inaccurate; scale X and recompute them
171 *
172  10 CONTINUE
173  knt = knt + 1
174  CALL csscal( n-1, rsafmn, x, incx )
175  beta = beta*rsafmn
176  alphi = alphi*rsafmn
177  alphr = alphr*rsafmn
178  IF( abs( beta ).LT.safmin )
179  $ GO TO 10
180 *
181 * New BETA is at most 1, at least SAFMIN
182 *
183  xnorm = scnrm2( n-1, x, incx )
184  alpha = cmplx( alphr, alphi )
185  beta = -sign( slapy3( alphr, alphi, xnorm ), alphr )
186  END IF
187  tau = cmplx( ( beta-alphr ) / beta, -alphi / beta )
188  alpha = cladiv( cmplx( one ), alpha-beta )
189  CALL cscal( n-1, alpha, x, incx )
190 *
191 * If ALPHA is subnormal, it may lose relative accuracy
192 *
193  DO 20 j = 1, knt
194  beta = beta*safmin
195  20 CONTINUE
196  alpha = beta
197  END IF
198 *
199  RETURN
200 *
201 * End of CLARFG
202 *
real function scnrm2(N, X, INCX)
SCNRM2
Definition: scnrm2.f:56
real function slapy3(X, Y, Z)
SLAPY3 returns sqrt(x2+y2+z2).
Definition: slapy3.f:70
subroutine cscal(N, CA, CX, INCX)
CSCAL
Definition: cscal.f:54
complex function cladiv(X, Y)
CLADIV performs complex division in real arithmetic, avoiding unnecessary overflow.
Definition: cladiv.f:66
real function slamch(CMACH)
SLAMCH
Definition: slamch.f:69
subroutine csscal(N, SA, CX, INCX)
CSSCAL
Definition: csscal.f:54

Here is the call graph for this function:

Here is the caller graph for this function: