174 SUBROUTINE cdrvgb( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
175 $ afb, lafb, asav, b, bsav, x, xact, s, work,
176 $ rwork, iwork, nout )
185 INTEGER la, lafb, nn, nout, nrhs
190 INTEGER iwork( * ), nval( * )
191 REAL rwork( * ), s( * )
192 COMPLEX a( * ), afb( * ), asav( * ), b( * ), bsav( * ),
193 $ work( * ), x( * ), xact( * )
200 parameter ( one = 1.0e+0, zero = 0.0e+0 )
202 parameter ( ntypes = 8 )
204 parameter ( ntests = 7 )
206 parameter ( ntran = 3 )
209 LOGICAL equil, nofact, prefac, trfcon, zerot
210 CHARACTER dist, equed, fact, trans,
TYPE, xtype
212 INTEGER i, i1, i2, iequed, ifact, ikl, iku, imat, in,
213 $ info, ioff, itran, izero, j, k, k1, kl, ku,
214 $ lda, ldafb, ldb, mode, n, nb, nbmin, nerrs,
215 $ nfact, nfail, nimat, nkl, nku, nrun, nt,
217 REAL ainvnm, amax, anorm, anormi, anormo, anrmpv,
218 $ cndnum, colcnd, rcond, rcondc, rcondi, rcondo,
219 $ roldc, roldi, roldo, rowcnd, rpvgrw,
223 CHARACTER equeds( 4 ), facts( 3 ), transs( ntran )
224 INTEGER iseed( 4 ), iseedy( 4 )
225 REAL rdum( 1 ), result( ntests ), berr( nrhs ),
226 $ errbnds_n( nrhs,3 ), errbnds_c( nrhs, 3 )
242 INTRINSIC abs, cmplx, max, min
250 COMMON / infoc / infot, nunit, ok, lerr
251 COMMON / srnamc / srnamt
254 DATA iseedy / 1988, 1989, 1990, 1991 /
255 DATA transs /
'N',
'T',
'C' /
256 DATA facts /
'F',
'N',
'E' /
257 DATA equeds /
'N',
'R',
'C',
'B' /
263 path( 1: 1 ) =
'Complex precision'
269 iseed( i ) = iseedy( i )
275 $
CALL cerrvx( path, nout )
294 nkl = max( 1, min( n, 4 ) )
309 ELSE IF( ikl.EQ.2 )
THEN
311 ELSE IF( ikl.EQ.3 )
THEN
313 ELSE IF( ikl.EQ.4 )
THEN
324 ELSE IF( iku.EQ.2 )
THEN
326 ELSE IF( iku.EQ.3 )
THEN
328 ELSE IF( iku.EQ.4 )
THEN
336 ldafb = 2*kl + ku + 1
337 IF( lda*n.GT.la .OR. ldafb*n.GT.lafb )
THEN
338 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
339 $
CALL aladhd( nout, path )
340 IF( lda*n.GT.la )
THEN
341 WRITE( nout, fmt = 9999 )la, n, kl, ku,
345 IF( ldafb*n.GT.lafb )
THEN
346 WRITE( nout, fmt = 9998 )lafb, n, kl, ku,
353 DO 120 imat = 1, nimat
357 IF( .NOT.dotype( imat ) )
362 zerot = imat.GE.2 .AND. imat.LE.4
363 IF( zerot .AND. n.LT.imat-1 )
369 CALL clatb4( path, imat, n, n,
TYPE, kl, ku, anorm,
370 $ mode, cndnum, dist )
371 rcondc = one / cndnum
374 CALL clatms( n, n, dist, iseed,
TYPE, rwork, mode,
375 $ cndnum, anorm, kl, ku,
'Z', a, lda, work,
381 CALL alaerh( path,
'CLATMS', info, 0,
' ', n, n,
382 $ kl, ku, -1, imat, nfail, nerrs, nout )
393 ELSE IF( imat.EQ.3 )
THEN
398 ioff = ( izero-1 )*lda
400 i1 = max( 1, ku+2-izero )
401 i2 = min( kl+ku+1, ku+1+( n-izero ) )
407 DO 30 i = max( 1, ku+2-j ),
408 $ min( kl+ku+1, ku+1+( n-j ) )
418 CALL clacpy(
'Full', kl+ku+1, n, a, lda, asav, lda )
421 equed = equeds( iequed )
422 IF( iequed.EQ.1 )
THEN
428 DO 100 ifact = 1, nfact
429 fact = facts( ifact )
430 prefac =
lsame( fact,
'F' )
431 nofact =
lsame( fact,
'N' )
432 equil =
lsame( fact,
'E' )
440 ELSE IF( .NOT.nofact )
THEN
447 CALL clacpy(
'Full', kl+ku+1, n, asav, lda,
448 $ afb( kl+1 ), ldafb )
449 IF( equil .OR. iequed.GT.1 )
THEN
454 CALL cgbequ( n, n, kl, ku, afb( kl+1 ),
455 $ ldafb, s, s( n+1 ), rowcnd,
456 $ colcnd, amax, info )
457 IF( info.EQ.0 .AND. n.GT.0 )
THEN
458 IF(
lsame( equed,
'R' ) )
THEN
461 ELSE IF(
lsame( equed,
'C' ) )
THEN
464 ELSE IF(
lsame( equed,
'B' ) )
THEN
471 CALL claqgb( n, n, kl, ku, afb( kl+1 ),
472 $ ldafb, s, s( n+1 ),
473 $ rowcnd, colcnd, amax,
488 anormo =
clangb(
'1', n, kl, ku, afb( kl+1 ),
490 anormi =
clangb(
'I', n, kl, ku, afb( kl+1 ),
495 CALL cgbtrf( n, n, kl, ku, afb, ldafb, iwork,
500 CALL claset(
'Full', n, n, cmplx( zero ),
501 $ cmplx( one ), work, ldb )
503 CALL cgbtrs(
'No transpose', n, kl, ku, n,
504 $ afb, ldafb, iwork, work, ldb,
509 ainvnm =
clange(
'1', n, n, work, ldb,
511 IF( anormo.LE.zero .OR. ainvnm.LE.zero )
THEN
514 rcondo = ( one / anormo ) / ainvnm
520 ainvnm =
clange(
'I', n, n, work, ldb,
522 IF( anormi.LE.zero .OR. ainvnm.LE.zero )
THEN
525 rcondi = ( one / anormi ) / ainvnm
529 DO 90 itran = 1, ntran
533 trans = transs( itran )
534 IF( itran.EQ.1 )
THEN
542 CALL clacpy(
'Full', kl+ku+1, n, asav, lda,
549 CALL clarhs( path, xtype,
'Full', trans, n,
550 $ n, kl, ku, nrhs, a, lda, xact,
551 $ ldb, b, ldb, iseed, info )
553 CALL clacpy(
'Full', n, nrhs, b, ldb, bsav,
556 IF( nofact .AND. itran.EQ.1 )
THEN
563 CALL clacpy(
'Full', kl+ku+1, n, a, lda,
564 $ afb( kl+1 ), ldafb )
565 CALL clacpy(
'Full', n, nrhs, b, ldb, x,
569 CALL cgbsv( n, kl, ku, nrhs, afb, ldafb,
570 $ iwork, x, ldb, info )
575 $
CALL alaerh( path,
'CGBSV ', info,
576 $ izero,
' ', n, n, kl, ku,
577 $ nrhs, imat, nfail, nerrs,
583 CALL cgbt01( n, n, kl, ku, a, lda, afb,
584 $ ldafb, iwork, work,
587 IF( izero.EQ.0 )
THEN
592 CALL clacpy(
'Full', n, nrhs, b, ldb,
594 CALL cgbt02(
'No transpose', n, n, kl,
595 $ ku, nrhs, a, lda, x, ldb,
596 $ work, ldb, result( 2 ) )
601 CALL cget04( n, nrhs, x, ldb, xact,
602 $ ldb, rcondc, result( 3 ) )
610 IF( result( k ).GE.thresh )
THEN
611 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
612 $
CALL aladhd( nout, path )
613 WRITE( nout, fmt = 9997 )
'CGBSV ',
614 $ n, kl, ku, imat, k, result( k )
624 $
CALL claset(
'Full', 2*kl+ku+1, n,
625 $ cmplx( zero ), cmplx( zero ),
627 CALL claset(
'Full', n, nrhs, cmplx( zero ),
628 $ cmplx( zero ), x, ldb )
629 IF( iequed.GT.1 .AND. n.GT.0 )
THEN
634 CALL claqgb( n, n, kl, ku, a, lda, s,
635 $ s( n+1 ), rowcnd, colcnd,
643 CALL cgbsvx( fact, trans, n, kl, ku, nrhs, a,
644 $ lda, afb, ldafb, iwork, equed,
645 $ s, s( ldb+1 ), b, ldb, x, ldb,
646 $ rcond, rwork, rwork( nrhs+1 ),
647 $ work, rwork( 2*nrhs+1 ), info )
652 $
CALL alaerh( path,
'CGBSVX', info, izero,
653 $ fact // trans, n, n, kl, ku,
654 $ nrhs, imat, nfail, nerrs,
663 DO 60 i = max( ku+2-j, 1 ),
664 $ min( n+ku+1-j, kl+ku+1 )
665 anrmpv = max( anrmpv,
666 $ abs( a( i+( j-1 )*lda ) ) )
669 rpvgrw =
clantb(
'M',
'U',
'N', info,
670 $ min( info-1, kl+ku ),
671 $ afb( max( 1, kl+ku+2-info ) ),
673 IF( rpvgrw.EQ.zero )
THEN
676 rpvgrw = anrmpv / rpvgrw
679 rpvgrw =
clantb(
'M',
'U',
'N', n, kl+ku,
681 IF( rpvgrw.EQ.zero )
THEN
684 rpvgrw =
clangb(
'M', n, kl, ku, a,
685 $ lda, rdum ) / rpvgrw
688 result( 7 ) = abs( rpvgrw-rwork( 2*nrhs+1 ) )
689 $ / max( rwork( 2*nrhs+1 ),
690 $ rpvgrw ) /
slamch(
'E' )
692 IF( .NOT.prefac )
THEN
697 CALL cgbt01( n, n, kl, ku, a, lda, afb,
698 $ ldafb, iwork, work,
710 CALL clacpy(
'Full', n, nrhs, bsav, ldb,
712 CALL cgbt02( trans, n, n, kl, ku, nrhs,
713 $ asav, lda, x, ldb, work, ldb,
719 IF( nofact .OR. ( prefac .AND.
720 $
lsame( equed,
'N' ) ) )
THEN
721 CALL cget04( n, nrhs, x, ldb, xact,
722 $ ldb, rcondc, result( 3 ) )
724 IF( itran.EQ.1 )
THEN
729 CALL cget04( n, nrhs, x, ldb, xact,
730 $ ldb, roldc, result( 3 ) )
736 CALL cgbt05( trans, n, kl, ku, nrhs, asav,
737 $ lda, bsav, ldb, x, ldb, xact,
738 $ ldb, rwork, rwork( nrhs+1 ),
747 result( 6 ) =
sget06( rcond, rcondc )
752 IF( .NOT.trfcon )
THEN
754 IF( result( k ).GE.thresh )
THEN
755 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
756 $
CALL aladhd( nout, path )
758 WRITE( nout, fmt = 9995 )
759 $
'CGBSVX', fact, trans, n, kl,
760 $ ku, equed, imat, k,
763 WRITE( nout, fmt = 9996 )
764 $
'CGBSVX', fact, trans, n, kl,
765 $ ku, imat, k, result( k )
772 IF( result( 1 ).GE.thresh .AND. .NOT.
774 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
775 $
CALL aladhd( nout, path )
777 WRITE( nout, fmt = 9995 )
'CGBSVX',
778 $ fact, trans, n, kl, ku, equed,
779 $ imat, 1, result( 1 )
781 WRITE( nout, fmt = 9996 )
'CGBSVX',
782 $ fact, trans, n, kl, ku, imat, 1,
788 IF( result( 6 ).GE.thresh )
THEN
789 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
790 $
CALL aladhd( nout, path )
792 WRITE( nout, fmt = 9995 )
'CGBSVX',
793 $ fact, trans, n, kl, ku, equed,
794 $ imat, 6, result( 6 )
796 WRITE( nout, fmt = 9996 )
'CGBSVX',
797 $ fact, trans, n, kl, ku, imat, 6,
803 IF( result( 7 ).GE.thresh )
THEN
804 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
805 $
CALL aladhd( nout, path )
807 WRITE( nout, fmt = 9995 )
'CGBSVX',
808 $ fact, trans, n, kl, ku, equed,
809 $ imat, 7, result( 7 )
811 WRITE( nout, fmt = 9996 )
'CGBSVX',
812 $ fact, trans, n, kl, ku, imat, 7,
826 CALL clacpy(
'Full', kl+ku+1, n, asav, lda, a,
828 CALL clacpy(
'Full', n, nrhs, bsav, ldb, b, ldb )
831 $
CALL claset(
'Full', 2*kl+ku+1, n,
832 $ cmplx( zero ), cmplx( zero ),
834 CALL claset(
'Full', n, nrhs,
835 $ cmplx( zero ), cmplx( zero ),
837 IF( iequed.GT.1 .AND. n.GT.0 )
THEN
842 CALL claqgb( n, n, kl, ku, a, lda, s,
843 $ s( n+1 ), rowcnd, colcnd, amax, equed )
851 CALL cgbsvxx( fact, trans, n, kl, ku, nrhs, a, lda,
852 $ afb, ldafb, iwork, equed, s, s( n+1 ), b, ldb,
853 $ x, ldb, rcond, rpvgrw_svxx, berr, n_err_bnds,
854 $ errbnds_n, errbnds_c, 0, zero, work,
859 IF( info.EQ.n+1 )
GOTO 90
860 IF( info.NE.izero )
THEN
861 CALL alaerh( path,
'CGBSVXX', info, izero,
862 $ fact // trans, n, n, -1, -1, nrhs,
863 $ imat, nfail, nerrs, nout )
871 IF ( info .GT. 0 .AND. info .LT. n+1 )
THEN
879 result( 7 ) = abs( rpvgrw-rpvgrw_svxx ) /
880 $ max( rpvgrw_svxx, rpvgrw ) /
883 IF( .NOT.prefac )
THEN
888 CALL cgbt01( n, n, kl, ku, a, lda, afb, ldafb,
889 $ iwork, work( 2*nrhs+1 ), result( 1 ) )
900 CALL clacpy(
'Full', n, nrhs, bsav, ldb, work,
902 CALL cgbt02( trans, n, n, kl, ku, nrhs, asav,
903 $ lda, x, ldb, work, ldb, result( 2 ) )
907 IF( nofact .OR. ( prefac .AND.
lsame( equed,
909 CALL cget04( n, nrhs, x, ldb, xact, ldb,
910 $ rcondc, result( 3 ) )
912 IF( itran.EQ.1 )
THEN
917 CALL cget04( n, nrhs, x, ldb, xact, ldb,
918 $ roldc, result( 3 ) )
927 result( 6 ) =
sget06( rcond, rcondc )
932 IF( .NOT.trfcon )
THEN
934 IF( result( k ).GE.thresh )
THEN
935 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
936 $
CALL aladhd( nout, path )
938 WRITE( nout, fmt = 9995 )
'CGBSVXX',
939 $ fact, trans, n, kl, ku, equed,
940 $ imat, k, result( k )
942 WRITE( nout, fmt = 9996 )
'CGBSVXX',
943 $ fact, trans, n, kl, ku, imat, k,
951 IF( result( 1 ).GE.thresh .AND. .NOT.prefac )
953 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
954 $
CALL aladhd( nout, path )
956 WRITE( nout, fmt = 9995 )
'CGBSVXX', fact,
957 $ trans, n, kl, ku, equed, imat, 1,
960 WRITE( nout, fmt = 9996 )
'CGBSVXX', fact,
961 $ trans, n, kl, ku, imat, 1,
967 IF( result( 6 ).GE.thresh )
THEN
968 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
969 $
CALL aladhd( nout, path )
971 WRITE( nout, fmt = 9995 )
'CGBSVXX', fact,
972 $ trans, n, kl, ku, equed, imat, 6,
975 WRITE( nout, fmt = 9996 )
'CGBSVXX', fact,
976 $ trans, n, kl, ku, imat, 6,
982 IF( result( 7 ).GE.thresh )
THEN
983 IF( nfail.EQ.0 .AND. nerrs.EQ.0 )
984 $
CALL aladhd( nout, path )
986 WRITE( nout, fmt = 9995 )
'CGBSVXX', fact,
987 $ trans, n, kl, ku, equed, imat, 7,
990 WRITE( nout, fmt = 9996 )
'CGBSVXX', fact,
991 $ trans, n, kl, ku, imat, 7,
1010 CALL alasvm( path, nout, nfail, nrun, nerrs )
1017 9999
FORMAT(
' *** In CDRVGB, LA=', i5,
' is too small for N=', i5,
1018 $
', KU=', i5,
', KL=', i5, /
' ==> Increase LA to at least ',
1020 9998
FORMAT(
' *** In CDRVGB, LAFB=', i5,
' is too small for N=', i5,
1021 $
', KU=', i5,
', KL=', i5, /
1022 $
' ==> Increase LAFB to at least ', i5 )
1023 9997
FORMAT( 1x, a,
', N=', i5,
', KL=', i5,
', KU=', i5,
', type ',
1024 $ i1,
', test(', i1,
')=', g12.5 )
1025 9996
FORMAT( 1x, a,
'( ''', a1,
''',''', a1,
''',', i5,
',', i5,
',',
1026 $ i5,
',...), type ', i1,
', test(', i1,
')=', g12.5 )
1027 9995
FORMAT( 1x, a,
'( ''', a1,
''',''', a1,
''',', i5,
',', i5,
',',
1028 $ i5,
',...), EQUED=''', a1,
''', type ', i1,
', test(', i1,
subroutine alasvm(TYPE, NOUT, NFAIL, NRUN, NERRS)
ALASVM
subroutine alaerh(PATH, SUBNAM, INFO, INFOE, OPTS, M, N, KL, KU, N5, IMAT, NFAIL, NERRS, NOUT)
ALAERH
subroutine clarhs(PATH, XTYPE, UPLO, TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, ISEED, INFO)
CLARHS
subroutine cdrvgb(DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA, AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK, RWORK, IWORK, NOUT)
CDRVGB
subroutine cgbtrf(M, N, KL, KU, AB, LDAB, IPIV, INFO)
CGBTRF
subroutine cgbsv(N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)
CGBSV computes the solution to system of linear equations A * X = B for GB matrices (simple driver) ...
subroutine cgbt02(TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B, LDB, RESID)
CGBT02
subroutine cgbt01(M, N, KL, KU, A, LDA, AFAC, LDAFAC, IPIV, WORK, RESID)
CGBT01
subroutine cebchvxx(THRESH, PATH)
CEBCHVXX
subroutine cerrvx(PATH, NUNIT)
CERRVX
real function sget06(RCOND, RCONDC)
SGET06
real function clange(NORM, M, N, A, LDA, WORK)
CLANGE returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
real function clantb(NORM, UPLO, DIAG, N, K, AB, LDAB, WORK)
CLANTB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a triangular band matrix.
subroutine xlaenv(ISPEC, NVALUE)
XLAENV
subroutine claqgb(M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, EQUED)
CLAQGB scales a general band matrix, using row and column scaling factors computed by sgbequ...
subroutine claset(UPLO, M, N, ALPHA, BETA, A, LDA)
CLASET initializes the off-diagonal elements and the diagonal elements of a matrix to given values...
subroutine clatms(M, N, DIST, ISEED, SYM, D, MODE, COND, DMAX, KL, KU, PACK, A, LDA, WORK, INFO)
CLATMS
subroutine aladhd(IOUNIT, PATH)
ALADHD
subroutine cgbt05(TRANS, N, KL, KU, NRHS, AB, LDAB, B, LDB, X, LDX, XACT, LDXACT, FERR, BERR, RESLTS)
CGBT05
subroutine cgbsvx(FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, RWORK, INFO)
CGBSVX computes the solution to system of linear equations A * X = B for GB matrices ...
subroutine cgbsvxx(FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX, RCOND, RPVGRW, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO)
CGBSVXX computes the solution to system of linear equations A * X = B for GB matrices ...
real function clangb(NORM, N, KL, KU, AB, LDAB, WORK)
CLANGB returns the value of the 1-norm, Frobenius norm, infinity-norm, or the largest absolute value ...
subroutine cgbequ(M, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND, AMAX, INFO)
CGBEQU
subroutine clacpy(UPLO, M, N, A, LDA, B, LDB)
CLACPY copies all or part of one two-dimensional array to another.
real function slamch(CMACH)
SLAMCH
subroutine clatb4(PATH, IMAT, M, N, TYPE, KL, KU, ANORM, MODE, CNDNUM, DIST)
CLATB4
subroutine cget04(N, NRHS, X, LDX, XACT, LDXACT, RCOND, RESID)
CGET04
real function cla_gbrpvgrw(N, KL, KU, NCOLS, AB, LDAB, AFB, LDAFB)
CLA_GBRPVGRW computes the reciprocal pivot growth factor norm(A)/norm(U) for a general banded matrix...
logical function lsame(CA, CB)
LSAME
subroutine cgbtrs(TRANS, N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO)
CGBTRS