LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
subroutine cgbtrf ( integer  M,
integer  N,
integer  KL,
integer  KU,
complex, dimension( ldab, * )  AB,
integer  LDAB,
integer, dimension( * )  IPIV,
integer  INFO 
)

CGBTRF

Download CGBTRF + dependencies [TGZ] [ZIP] [TXT]

Purpose:
 CGBTRF computes an LU factorization of a complex m-by-n band matrix A
 using partial pivoting with row interchanges.

 This is the blocked version of the algorithm, calling Level 3 BLAS.
Parameters
[in]M
          M is INTEGER
          The number of rows of the matrix A.  M >= 0.
[in]N
          N is INTEGER
          The number of columns of the matrix A.  N >= 0.
[in]KL
          KL is INTEGER
          The number of subdiagonals within the band of A.  KL >= 0.
[in]KU
          KU is INTEGER
          The number of superdiagonals within the band of A.  KU >= 0.
[in,out]AB
          AB is COMPLEX array, dimension (LDAB,N)
          On entry, the matrix A in band storage, in rows KL+1 to
          2*KL+KU+1; rows 1 to KL of the array need not be set.
          The j-th column of A is stored in the j-th column of the
          array AB as follows:
          AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl)

          On exit, details of the factorization: U is stored as an
          upper triangular band matrix with KL+KU superdiagonals in
          rows 1 to KL+KU+1, and the multipliers used during the
          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
          See below for further details.
[in]LDAB
          LDAB is INTEGER
          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
[out]IPIV
          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i).
[out]INFO
          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -i, the i-th argument had an illegal value
          > 0: if INFO = +i, U(i,i) is exactly zero. The factorization
               has been completed, but the factor U is exactly
               singular, and division by zero will occur if it is used
               to solve a system of equations.
Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Date
November 2011
Further Details:
  The band storage scheme is illustrated by the following example, when
  M = N = 6, KL = 2, KU = 1:

  On entry:                       On exit:

      *    *    *    +    +    +       *    *    *   u14  u25  u36
      *    *    +    +    +    +       *    *   u13  u24  u35  u46
      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *

  Array elements marked * are not used by the routine; elements marked
  + need not be set on entry, but are required by the routine to store
  elements of U because of fill-in resulting from the row interchanges.

Definition at line 146 of file cgbtrf.f.

146 *
147 * -- LAPACK computational routine (version 3.4.0) --
148 * -- LAPACK is a software package provided by Univ. of Tennessee, --
149 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
150 * November 2011
151 *
152 * .. Scalar Arguments ..
153  INTEGER info, kl, ku, ldab, m, n
154 * ..
155 * .. Array Arguments ..
156  INTEGER ipiv( * )
157  COMPLEX ab( ldab, * )
158 * ..
159 *
160 * =====================================================================
161 *
162 * .. Parameters ..
163  COMPLEX one, zero
164  parameter ( one = ( 1.0e+0, 0.0e+0 ),
165  $ zero = ( 0.0e+0, 0.0e+0 ) )
166  INTEGER nbmax, ldwork
167  parameter ( nbmax = 64, ldwork = nbmax+1 )
168 * ..
169 * .. Local Scalars ..
170  INTEGER i, i2, i3, ii, ip, j, j2, j3, jb, jj, jm, jp,
171  $ ju, k2, km, kv, nb, nw
172  COMPLEX temp
173 * ..
174 * .. Local Arrays ..
175  COMPLEX work13( ldwork, nbmax ),
176  $ work31( ldwork, nbmax )
177 * ..
178 * .. External Functions ..
179  INTEGER icamax, ilaenv
180  EXTERNAL icamax, ilaenv
181 * ..
182 * .. External Subroutines ..
183  EXTERNAL ccopy, cgbtf2, cgemm, cgeru, claswp, cscal,
184  $ cswap, ctrsm, xerbla
185 * ..
186 * .. Intrinsic Functions ..
187  INTRINSIC max, min
188 * ..
189 * .. Executable Statements ..
190 *
191 * KV is the number of superdiagonals in the factor U, allowing for
192 * fill-in
193 *
194  kv = ku + kl
195 *
196 * Test the input parameters.
197 *
198  info = 0
199  IF( m.LT.0 ) THEN
200  info = -1
201  ELSE IF( n.LT.0 ) THEN
202  info = -2
203  ELSE IF( kl.LT.0 ) THEN
204  info = -3
205  ELSE IF( ku.LT.0 ) THEN
206  info = -4
207  ELSE IF( ldab.LT.kl+kv+1 ) THEN
208  info = -6
209  END IF
210  IF( info.NE.0 ) THEN
211  CALL xerbla( 'CGBTRF', -info )
212  RETURN
213  END IF
214 *
215 * Quick return if possible
216 *
217  IF( m.EQ.0 .OR. n.EQ.0 )
218  $ RETURN
219 *
220 * Determine the block size for this environment
221 *
222  nb = ilaenv( 1, 'CGBTRF', ' ', m, n, kl, ku )
223 *
224 * The block size must not exceed the limit set by the size of the
225 * local arrays WORK13 and WORK31.
226 *
227  nb = min( nb, nbmax )
228 *
229  IF( nb.LE.1 .OR. nb.GT.kl ) THEN
230 *
231 * Use unblocked code
232 *
233  CALL cgbtf2( m, n, kl, ku, ab, ldab, ipiv, info )
234  ELSE
235 *
236 * Use blocked code
237 *
238 * Zero the superdiagonal elements of the work array WORK13
239 *
240  DO 20 j = 1, nb
241  DO 10 i = 1, j - 1
242  work13( i, j ) = zero
243  10 CONTINUE
244  20 CONTINUE
245 *
246 * Zero the subdiagonal elements of the work array WORK31
247 *
248  DO 40 j = 1, nb
249  DO 30 i = j + 1, nb
250  work31( i, j ) = zero
251  30 CONTINUE
252  40 CONTINUE
253 *
254 * Gaussian elimination with partial pivoting
255 *
256 * Set fill-in elements in columns KU+2 to KV to zero
257 *
258  DO 60 j = ku + 2, min( kv, n )
259  DO 50 i = kv - j + 2, kl
260  ab( i, j ) = zero
261  50 CONTINUE
262  60 CONTINUE
263 *
264 * JU is the index of the last column affected by the current
265 * stage of the factorization
266 *
267  ju = 1
268 *
269  DO 180 j = 1, min( m, n ), nb
270  jb = min( nb, min( m, n )-j+1 )
271 *
272 * The active part of the matrix is partitioned
273 *
274 * A11 A12 A13
275 * A21 A22 A23
276 * A31 A32 A33
277 *
278 * Here A11, A21 and A31 denote the current block of JB columns
279 * which is about to be factorized. The number of rows in the
280 * partitioning are JB, I2, I3 respectively, and the numbers
281 * of columns are JB, J2, J3. The superdiagonal elements of A13
282 * and the subdiagonal elements of A31 lie outside the band.
283 *
284  i2 = min( kl-jb, m-j-jb+1 )
285  i3 = min( jb, m-j-kl+1 )
286 *
287 * J2 and J3 are computed after JU has been updated.
288 *
289 * Factorize the current block of JB columns
290 *
291  DO 80 jj = j, j + jb - 1
292 *
293 * Set fill-in elements in column JJ+KV to zero
294 *
295  IF( jj+kv.LE.n ) THEN
296  DO 70 i = 1, kl
297  ab( i, jj+kv ) = zero
298  70 CONTINUE
299  END IF
300 *
301 * Find pivot and test for singularity. KM is the number of
302 * subdiagonal elements in the current column.
303 *
304  km = min( kl, m-jj )
305  jp = icamax( km+1, ab( kv+1, jj ), 1 )
306  ipiv( jj ) = jp + jj - j
307  IF( ab( kv+jp, jj ).NE.zero ) THEN
308  ju = max( ju, min( jj+ku+jp-1, n ) )
309  IF( jp.NE.1 ) THEN
310 *
311 * Apply interchange to columns J to J+JB-1
312 *
313  IF( jp+jj-1.LT.j+kl ) THEN
314 *
315  CALL cswap( jb, ab( kv+1+jj-j, j ), ldab-1,
316  $ ab( kv+jp+jj-j, j ), ldab-1 )
317  ELSE
318 *
319 * The interchange affects columns J to JJ-1 of A31
320 * which are stored in the work array WORK31
321 *
322  CALL cswap( jj-j, ab( kv+1+jj-j, j ), ldab-1,
323  $ work31( jp+jj-j-kl, 1 ), ldwork )
324  CALL cswap( j+jb-jj, ab( kv+1, jj ), ldab-1,
325  $ ab( kv+jp, jj ), ldab-1 )
326  END IF
327  END IF
328 *
329 * Compute multipliers
330 *
331  CALL cscal( km, one / ab( kv+1, jj ), ab( kv+2, jj ),
332  $ 1 )
333 *
334 * Update trailing submatrix within the band and within
335 * the current block. JM is the index of the last column
336 * which needs to be updated.
337 *
338  jm = min( ju, j+jb-1 )
339  IF( jm.GT.jj )
340  $ CALL cgeru( km, jm-jj, -one, ab( kv+2, jj ), 1,
341  $ ab( kv, jj+1 ), ldab-1,
342  $ ab( kv+1, jj+1 ), ldab-1 )
343  ELSE
344 *
345 * If pivot is zero, set INFO to the index of the pivot
346 * unless a zero pivot has already been found.
347 *
348  IF( info.EQ.0 )
349  $ info = jj
350  END IF
351 *
352 * Copy current column of A31 into the work array WORK31
353 *
354  nw = min( jj-j+1, i3 )
355  IF( nw.GT.0 )
356  $ CALL ccopy( nw, ab( kv+kl+1-jj+j, jj ), 1,
357  $ work31( 1, jj-j+1 ), 1 )
358  80 CONTINUE
359  IF( j+jb.LE.n ) THEN
360 *
361 * Apply the row interchanges to the other blocks.
362 *
363  j2 = min( ju-j+1, kv ) - jb
364  j3 = max( 0, ju-j-kv+1 )
365 *
366 * Use CLASWP to apply the row interchanges to A12, A22, and
367 * A32.
368 *
369  CALL claswp( j2, ab( kv+1-jb, j+jb ), ldab-1, 1, jb,
370  $ ipiv( j ), 1 )
371 *
372 * Adjust the pivot indices.
373 *
374  DO 90 i = j, j + jb - 1
375  ipiv( i ) = ipiv( i ) + j - 1
376  90 CONTINUE
377 *
378 * Apply the row interchanges to A13, A23, and A33
379 * columnwise.
380 *
381  k2 = j - 1 + jb + j2
382  DO 110 i = 1, j3
383  jj = k2 + i
384  DO 100 ii = j + i - 1, j + jb - 1
385  ip = ipiv( ii )
386  IF( ip.NE.ii ) THEN
387  temp = ab( kv+1+ii-jj, jj )
388  ab( kv+1+ii-jj, jj ) = ab( kv+1+ip-jj, jj )
389  ab( kv+1+ip-jj, jj ) = temp
390  END IF
391  100 CONTINUE
392  110 CONTINUE
393 *
394 * Update the relevant part of the trailing submatrix
395 *
396  IF( j2.GT.0 ) THEN
397 *
398 * Update A12
399 *
400  CALL ctrsm( 'Left', 'Lower', 'No transpose', 'Unit',
401  $ jb, j2, one, ab( kv+1, j ), ldab-1,
402  $ ab( kv+1-jb, j+jb ), ldab-1 )
403 *
404  IF( i2.GT.0 ) THEN
405 *
406 * Update A22
407 *
408  CALL cgemm( 'No transpose', 'No transpose', i2, j2,
409  $ jb, -one, ab( kv+1+jb, j ), ldab-1,
410  $ ab( kv+1-jb, j+jb ), ldab-1, one,
411  $ ab( kv+1, j+jb ), ldab-1 )
412  END IF
413 *
414  IF( i3.GT.0 ) THEN
415 *
416 * Update A32
417 *
418  CALL cgemm( 'No transpose', 'No transpose', i3, j2,
419  $ jb, -one, work31, ldwork,
420  $ ab( kv+1-jb, j+jb ), ldab-1, one,
421  $ ab( kv+kl+1-jb, j+jb ), ldab-1 )
422  END IF
423  END IF
424 *
425  IF( j3.GT.0 ) THEN
426 *
427 * Copy the lower triangle of A13 into the work array
428 * WORK13
429 *
430  DO 130 jj = 1, j3
431  DO 120 ii = jj, jb
432  work13( ii, jj ) = ab( ii-jj+1, jj+j+kv-1 )
433  120 CONTINUE
434  130 CONTINUE
435 *
436 * Update A13 in the work array
437 *
438  CALL ctrsm( 'Left', 'Lower', 'No transpose', 'Unit',
439  $ jb, j3, one, ab( kv+1, j ), ldab-1,
440  $ work13, ldwork )
441 *
442  IF( i2.GT.0 ) THEN
443 *
444 * Update A23
445 *
446  CALL cgemm( 'No transpose', 'No transpose', i2, j3,
447  $ jb, -one, ab( kv+1+jb, j ), ldab-1,
448  $ work13, ldwork, one, ab( 1+jb, j+kv ),
449  $ ldab-1 )
450  END IF
451 *
452  IF( i3.GT.0 ) THEN
453 *
454 * Update A33
455 *
456  CALL cgemm( 'No transpose', 'No transpose', i3, j3,
457  $ jb, -one, work31, ldwork, work13,
458  $ ldwork, one, ab( 1+kl, j+kv ), ldab-1 )
459  END IF
460 *
461 * Copy the lower triangle of A13 back into place
462 *
463  DO 150 jj = 1, j3
464  DO 140 ii = jj, jb
465  ab( ii-jj+1, jj+j+kv-1 ) = work13( ii, jj )
466  140 CONTINUE
467  150 CONTINUE
468  END IF
469  ELSE
470 *
471 * Adjust the pivot indices.
472 *
473  DO 160 i = j, j + jb - 1
474  ipiv( i ) = ipiv( i ) + j - 1
475  160 CONTINUE
476  END IF
477 *
478 * Partially undo the interchanges in the current block to
479 * restore the upper triangular form of A31 and copy the upper
480 * triangle of A31 back into place
481 *
482  DO 170 jj = j + jb - 1, j, -1
483  jp = ipiv( jj ) - jj + 1
484  IF( jp.NE.1 ) THEN
485 *
486 * Apply interchange to columns J to JJ-1
487 *
488  IF( jp+jj-1.LT.j+kl ) THEN
489 *
490 * The interchange does not affect A31
491 *
492  CALL cswap( jj-j, ab( kv+1+jj-j, j ), ldab-1,
493  $ ab( kv+jp+jj-j, j ), ldab-1 )
494  ELSE
495 *
496 * The interchange does affect A31
497 *
498  CALL cswap( jj-j, ab( kv+1+jj-j, j ), ldab-1,
499  $ work31( jp+jj-j-kl, 1 ), ldwork )
500  END IF
501  END IF
502 *
503 * Copy the current column of A31 back into place
504 *
505  nw = min( i3, jj-j+1 )
506  IF( nw.GT.0 )
507  $ CALL ccopy( nw, work31( 1, jj-j+1 ), 1,
508  $ ab( kv+kl+1-jj+j, jj ), 1 )
509  170 CONTINUE
510  180 CONTINUE
511  END IF
512 *
513  RETURN
514 *
515 * End of CGBTRF
516 *
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine cscal(N, CA, CX, INCX)
CSCAL
Definition: cscal.f:54
subroutine ctrsm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)
CTRSM
Definition: ctrsm.f:182
integer function icamax(N, CX, INCX)
ICAMAX
Definition: icamax.f:53
integer function ilaenv(ISPEC, NAME, OPTS, N1, N2, N3, N4)
Definition: tstiee.f:83
subroutine ccopy(N, CX, INCX, CY, INCY)
CCOPY
Definition: ccopy.f:52
subroutine cswap(N, CX, INCX, CY, INCY)
CSWAP
Definition: cswap.f:52
subroutine cgbtf2(M, N, KL, KU, AB, LDAB, IPIV, INFO)
CGBTF2 computes the LU factorization of a general band matrix using the unblocked version of the algo...
Definition: cgbtf2.f:147
subroutine cgeru(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERU
Definition: cgeru.f:132
subroutine cgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC)
CGEMM
Definition: cgemm.f:189
subroutine claswp(N, A, LDA, K1, K2, IPIV, INCX)
CLASWP performs a series of row interchanges on a general rectangular matrix.
Definition: claswp.f:116

Here is the call graph for this function:

Here is the caller graph for this function: