399 SUBROUTINE cherfsx( UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV,
400 $ s, b, ldb, x, ldx, rcond, berr, n_err_bnds,
401 $ err_bnds_norm, err_bnds_comp, nparams, params,
402 $ work, rwork, info )
410 CHARACTER UPLO, EQUED
411 INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS,
417 COMPLEX A( lda, * ), AF( ldaf, * ), B( ldb, * ),
418 $ x( ldx, * ), work( * )
419 REAL S( * ), PARAMS( * ), BERR( * ), RWORK( * ),
420 $ err_bnds_norm( nrhs, * ),
421 $ err_bnds_comp( nrhs, * )
427 parameter ( zero = 0.0e+0, one = 1.0e+0 )
428 REAL ITREF_DEFAULT, ITHRESH_DEFAULT,
429 $ componentwise_default
430 REAL RTHRESH_DEFAULT, DZTHRESH_DEFAULT
431 parameter ( itref_default = 1.0 )
432 parameter ( ithresh_default = 10.0 )
433 parameter ( componentwise_default = 1.0 )
434 parameter ( rthresh_default = 0.5 )
435 parameter ( dzthresh_default = 0.25 )
436 INTEGER LA_LINRX_ITREF_I, LA_LINRX_ITHRESH_I,
438 parameter ( la_linrx_itref_i = 1,
439 $ la_linrx_ithresh_i = 2 )
440 parameter ( la_linrx_cwise_i = 3 )
441 INTEGER LA_LINRX_TRUST_I, LA_LINRX_ERR_I,
443 parameter ( la_linrx_trust_i = 1, la_linrx_err_i = 2 )
444 parameter ( la_linrx_rcond_i = 3 )
449 INTEGER J, PREC_TYPE, REF_TYPE
451 REAL ANORM, RCOND_TMP
452 REAL ILLRCOND_THRESH, ERR_LBND, CWISE_WRONG
455 REAL RTHRESH, UNSTABLE_THRESH
461 INTRINSIC max, sqrt, transfer
466 REAL SLAMCH, CLANHE, CLA_HERCOND_X, CLA_HERCOND_C
468 INTEGER BLAS_FPINFO_X
469 INTEGER ILATRANS, ILAPREC
476 ref_type = int( itref_default )
477 IF ( nparams .GE. la_linrx_itref_i )
THEN
478 IF ( params( la_linrx_itref_i ) .LT. 0.0 )
THEN
479 params( la_linrx_itref_i ) = itref_default
481 ref_type = params( la_linrx_itref_i )
487 illrcond_thresh =
REAL( N ) * SLAMCH(
'Epsilon' )
488 ithresh = int( ithresh_default )
489 rthresh = rthresh_default
490 unstable_thresh = dzthresh_default
491 ignore_cwise = componentwise_default .EQ. 0.0
493 IF ( nparams.GE.la_linrx_ithresh_i )
THEN
494 IF ( params( la_linrx_ithresh_i ).LT.0.0 )
THEN
495 params( la_linrx_ithresh_i ) = ithresh
497 ithresh = int( params( la_linrx_ithresh_i ) )
500 IF ( nparams.GE.la_linrx_cwise_i )
THEN
501 IF ( params(la_linrx_cwise_i ).LT.0.0 )
THEN
502 IF ( ignore_cwise )
THEN
503 params( la_linrx_cwise_i ) = 0.0
505 params( la_linrx_cwise_i ) = 1.0
508 ignore_cwise = params( la_linrx_cwise_i ) .EQ. 0.0
511 IF ( ref_type .EQ. 0 .OR. n_err_bnds .EQ. 0 )
THEN
513 ELSE IF ( ignore_cwise )
THEN
519 rcequ = lsame( equed,
'Y' )
523 IF (.NOT.lsame( uplo,
'U' ) .AND. .NOT.lsame( uplo,
'L' ) )
THEN
525 ELSE IF( .NOT.rcequ .AND. .NOT.lsame( equed,
'N' ) )
THEN
527 ELSE IF( n.LT.0 )
THEN
529 ELSE IF( nrhs.LT.0 )
THEN
531 ELSE IF( lda.LT.max( 1, n ) )
THEN
533 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
535 ELSE IF( ldb.LT.max( 1, n ) )
THEN
537 ELSE IF( ldx.LT.max( 1, n ) )
THEN
541 CALL xerbla(
'CHERFSX', -info )
547 IF( n.EQ.0 .OR. nrhs.EQ.0 )
THEN
551 IF ( n_err_bnds .GE. 1 )
THEN
552 err_bnds_norm( j, la_linrx_trust_i ) = 1.0
553 err_bnds_comp( j, la_linrx_trust_i ) = 1.0
555 IF ( n_err_bnds .GE. 2 )
THEN
556 err_bnds_norm( j, la_linrx_err_i ) = 0.0
557 err_bnds_comp( j, la_linrx_err_i ) = 0.0
559 IF ( n_err_bnds .GE. 3 )
THEN
560 err_bnds_norm( j, la_linrx_rcond_i ) = 1.0
561 err_bnds_comp( j, la_linrx_rcond_i ) = 1.0
572 IF ( n_err_bnds .GE. 1 )
THEN
573 err_bnds_norm( j, la_linrx_trust_i ) = 1.0
574 err_bnds_comp( j, la_linrx_trust_i ) = 1.0
576 IF ( n_err_bnds .GE. 2 )
THEN
577 err_bnds_norm( j, la_linrx_err_i ) = 1.0
578 err_bnds_comp( j, la_linrx_err_i ) = 1.0
580 IF ( n_err_bnds .GE. 3 )
THEN
581 err_bnds_norm( j, la_linrx_rcond_i ) = 0.0
582 err_bnds_comp( j, la_linrx_rcond_i ) = 0.0
590 anorm = clanhe( norm, uplo, n, a, lda, rwork )
591 CALL checon( uplo, n, af, ldaf, ipiv, anorm, rcond, work,
596 IF ( ref_type .NE. 0 )
THEN
598 prec_type = ilaprec(
'D' )
601 $ nrhs, a, lda, af, ldaf, ipiv, rcequ, s, b,
602 $ ldb, x, ldx, berr, n_norms, err_bnds_norm, err_bnds_comp,
603 $ work, rwork, work(n+1),
604 $ transfer(rwork(1:2*n), (/ (zero, zero) /), n), rcond,
605 $ ithresh, rthresh, unstable_thresh, ignore_cwise,
609 err_lbnd = max( 10.0, sqrt(
REAL( N ) ) ) * slamch(
'Epsilon' )
610 IF ( n_err_bnds .GE. 1 .AND. n_norms .GE. 1 )
THEN
615 rcond_tmp = cla_hercond_c( uplo, n, a, lda, af, ldaf, ipiv,
616 $ s, .true., info, work, rwork )
618 rcond_tmp = cla_hercond_c( uplo, n, a, lda, af, ldaf, ipiv,
619 $ s, .false., info, work, rwork )
625 IF ( n_err_bnds .GE. la_linrx_err_i
626 $ .AND. err_bnds_norm( j, la_linrx_err_i ) .GT. 1.0 )
627 $ err_bnds_norm( j, la_linrx_err_i ) = 1.0
631 IF (rcond_tmp .LT. illrcond_thresh)
THEN
632 err_bnds_norm( j, la_linrx_err_i ) = 1.0
633 err_bnds_norm( j, la_linrx_trust_i ) = 0.0
634 IF ( info .LE. n ) info = n + j
635 ELSE IF ( err_bnds_norm( j, la_linrx_err_i ) .LT. err_lbnd )
637 err_bnds_norm( j, la_linrx_err_i ) = err_lbnd
638 err_bnds_norm( j, la_linrx_trust_i ) = 1.0
643 IF ( n_err_bnds .GE. la_linrx_rcond_i )
THEN
644 err_bnds_norm( j, la_linrx_rcond_i ) = rcond_tmp
649 IF ( n_err_bnds .GE. 1 .AND. n_norms .GE. 2 )
THEN
659 cwise_wrong = sqrt( slamch(
'Epsilon' ) )
661 IF ( err_bnds_comp( j, la_linrx_err_i ) .LT. cwise_wrong )
663 rcond_tmp = cla_hercond_x( uplo, n, a, lda, af, ldaf,
664 $ ipiv, x( 1, j ), info, work, rwork )
671 IF ( n_err_bnds .GE. la_linrx_err_i
672 $ .AND. err_bnds_comp( j, la_linrx_err_i ) .GT. 1.0 )
673 $ err_bnds_comp( j, la_linrx_err_i ) = 1.0
677 IF ( rcond_tmp .LT. illrcond_thresh )
THEN
678 err_bnds_comp( j, la_linrx_err_i ) = 1.0
679 err_bnds_comp( j, la_linrx_trust_i ) = 0.0
680 IF ( .NOT. ignore_cwise
681 $ .AND. info.LT.n + j ) info = n + j
682 ELSE IF ( err_bnds_comp( j, la_linrx_err_i )
683 $ .LT. err_lbnd )
THEN
684 err_bnds_comp( j, la_linrx_err_i ) = err_lbnd
685 err_bnds_comp( j, la_linrx_trust_i ) = 1.0
690 IF ( n_err_bnds .GE. la_linrx_rcond_i )
THEN
691 err_bnds_comp( j, la_linrx_rcond_i ) = rcond_tmp
integer function ilatrans(TRANS)
ILATRANS
real function cla_hercond_c(UPLO, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO, WORK, RWORK)
CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefin...
real function clanhe(NORM, UPLO, N, A, LDA, WORK)
CLANHE returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix.
subroutine xerbla(SRNAME, INFO)
XERBLA
real function cla_hercond_x(UPLO, N, A, LDA, AF, LDAF, IPIV, X, INFO, WORK, RWORK)
CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite m...
integer function ilaprec(PREC)
ILAPREC
subroutine cherfsx(UPLO, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, S, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, WORK, RWORK, INFO)
CHERFSX
subroutine checon(UPLO, N, A, LDA, IPIV, ANORM, RCOND, WORK, INFO)
CHECON
subroutine cla_herfsx_extended(PREC_TYPE, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, COLEQU, C, B, LDB, Y, LDY, BERR_OUT, N_NORMS, ERR_BNDS_NORM, ERR_BNDS_COMP, RES, AYB, DY, Y_TAIL, RCOND, ITHRESH, RTHRESH, DZ_UB, IGNORE_CWISE, INFO)
CLA_HERFSX_EXTENDED improves the computed solution to a system of linear equations for Hermitian inde...
real function slamch(CMACH)
SLAMCH
logical function lsame(CA, CB)
LSAME