138 REAL FUNCTION cla_hercond_c( UPLO, N, A, LDA, AF, LDAF, IPIV, C,
139 $ capply, info, work, rwork )
149 INTEGER N, LDA, LDAF, INFO
153 COMPLEX A( lda, * ), AF( ldaf, * ), WORK( * )
154 REAL C ( * ), RWORK( * )
161 REAL AINVNM, ANORM, TMP
182 cabs1( zdum ) = abs(
REAL( ZDUM ) ) + abs( AIMAG( zdum ) )
189 upper = lsame( uplo,
'U' )
190 IF( .NOT.upper .AND. .NOT.lsame( uplo,
'L' ) )
THEN
192 ELSE IF( n.LT.0 )
THEN
194 ELSE IF( lda.LT.max( 1, n ) )
THEN
196 ELSE IF( ldaf.LT.max( 1, n ) )
THEN
200 CALL xerbla(
'CLA_HERCOND_C', -info )
204 IF ( lsame( uplo,
'U' ) ) up = .true.
214 tmp = tmp + cabs1( a( j, i ) ) / c( j )
217 tmp = tmp + cabs1( a( i, j ) ) / c( j )
221 tmp = tmp + cabs1( a( j, i ) )
224 tmp = tmp + cabs1( a( i, j ) )
228 anorm = max( anorm, tmp )
235 tmp = tmp + cabs1( a( i, j ) ) / c( j )
238 tmp = tmp + cabs1( a( j, i ) ) / c( j )
242 tmp = tmp + cabs1( a( i, j ) )
245 tmp = tmp + cabs1( a( j, i ) )
249 anorm = max( anorm, tmp )
258 ELSE IF( anorm .EQ. 0.0e+0 )
THEN
268 CALL clacn2( n, work( n+1 ), work, ainvnm, kase, isave )
275 work( i ) = work( i ) * rwork( i )
279 CALL chetrs(
'U', n, 1, af, ldaf, ipiv,
282 CALL chetrs(
'L', n, 1, af, ldaf, ipiv,
290 work( i ) = work( i ) * c( i )
299 work( i ) = work( i ) * c( i )
304 CALL chetrs(
'U', n, 1, af, ldaf, ipiv,
307 CALL chetrs(
'L', n, 1, af, ldaf, ipiv,
314 work( i ) = work( i ) * rwork( i )
322 IF( ainvnm .NE. 0.0e+0 )
real function cla_hercond_c(UPLO, N, A, LDA, AF, LDAF, IPIV, C, CAPPLY, INFO, WORK, RWORK)
CLA_HERCOND_C computes the infinity norm condition number of op(A)*inv(diag(c)) for Hermitian indefin...
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine chetrs(UPLO, N, NRHS, A, LDA, IPIV, B, LDB, INFO)
CHETRS
subroutine clacn2(N, V, X, EST, KASE, ISAVE)
CLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...