130 INTEGER info, lda, ldb, n, nrhs
134 COMPLEX a( lda, * ), b( ldb, * )
141 parameter ( one = ( 1.0e+0, 0.0e+0 ) )
147 COMPLEX ak, akm1, akm1k, bk, bkm1, denom
157 INTRINSIC conjg, max, real
162 upper =
lsame( uplo,
'U' )
163 IF( .NOT.upper .AND. .NOT.
lsame( uplo,
'L' ) )
THEN
165 ELSE IF( n.LT.0 )
THEN
167 ELSE IF( nrhs.LT.0 )
THEN
169 ELSE IF( lda.LT.max( 1, n ) )
THEN
171 ELSE IF( ldb.LT.max( 1, n ) )
THEN
175 CALL xerbla(
'CHETRS', -info )
181 IF( n.EQ.0 .OR. nrhs.EQ.0 )
201 IF( ipiv( k ).GT.0 )
THEN
209 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
214 CALL cgeru( k-1, nrhs, -one, a( 1, k ), 1, b( k, 1 ), ldb,
219 s =
REAL( ONE ) /
REAL( A( K, K ) )
220 CALL csscal( nrhs, s, b( k, 1 ), ldb )
230 $
CALL cswap( nrhs, b( k-1, 1 ), ldb, b( kp, 1 ), ldb )
235 CALL cgeru( k-2, nrhs, -one, a( 1, k ), 1, b( k, 1 ), ldb,
237 CALL cgeru( k-2, nrhs, -one, a( 1, k-1 ), 1, b( k-1, 1 ),
238 $ ldb, b( 1, 1 ), ldb )
243 akm1 = a( k-1, k-1 ) / akm1k
244 ak = a( k, k ) / conjg( akm1k )
245 denom = akm1*ak - one
247 bkm1 = b( k-1, j ) / akm1k
248 bk = b( k, j ) / conjg( akm1k )
249 b( k-1, j ) = ( ak*bkm1-bk ) / denom
250 b( k, j ) = ( akm1*bk-bkm1 ) / denom
271 IF( ipiv( k ).GT.0 )
THEN
279 CALL clacgv( nrhs, b( k, 1 ), ldb )
280 CALL cgemv(
'Conjugate transpose', k-1, nrhs, -one, b,
281 $ ldb, a( 1, k ), 1, one, b( k, 1 ), ldb )
282 CALL clacgv( nrhs, b( k, 1 ), ldb )
289 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
299 CALL clacgv( nrhs, b( k, 1 ), ldb )
300 CALL cgemv(
'Conjugate transpose', k-1, nrhs, -one, b,
301 $ ldb, a( 1, k ), 1, one, b( k, 1 ), ldb )
302 CALL clacgv( nrhs, b( k, 1 ), ldb )
304 CALL clacgv( nrhs, b( k+1, 1 ), ldb )
305 CALL cgemv(
'Conjugate transpose', k-1, nrhs, -one, b,
306 $ ldb, a( 1, k+1 ), 1, one, b( k+1, 1 ), ldb )
307 CALL clacgv( nrhs, b( k+1, 1 ), ldb )
314 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
338 IF( ipiv( k ).GT.0 )
THEN
346 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
352 $
CALL cgeru( n-k, nrhs, -one, a( k+1, k ), 1, b( k, 1 ),
353 $ ldb, b( k+1, 1 ), ldb )
357 s =
REAL( ONE ) /
REAL( A( K, K ) )
358 CALL csscal( nrhs, s, b( k, 1 ), ldb )
368 $
CALL cswap( nrhs, b( k+1, 1 ), ldb, b( kp, 1 ), ldb )
374 CALL cgeru( n-k-1, nrhs, -one, a( k+2, k ), 1, b( k, 1 ),
375 $ ldb, b( k+2, 1 ), ldb )
376 CALL cgeru( n-k-1, nrhs, -one, a( k+2, k+1 ), 1,
377 $ b( k+1, 1 ), ldb, b( k+2, 1 ), ldb )
383 akm1 = a( k, k ) / conjg( akm1k )
384 ak = a( k+1, k+1 ) / akm1k
385 denom = akm1*ak - one
387 bkm1 = b( k, j ) / conjg( akm1k )
388 bk = b( k+1, j ) / akm1k
389 b( k, j ) = ( ak*bkm1-bk ) / denom
390 b( k+1, j ) = ( akm1*bk-bkm1 ) / denom
411 IF( ipiv( k ).GT.0 )
THEN
419 CALL clacgv( nrhs, b( k, 1 ), ldb )
420 CALL cgemv(
'Conjugate transpose', n-k, nrhs, -one,
421 $ b( k+1, 1 ), ldb, a( k+1, k ), 1, one,
423 CALL clacgv( nrhs, b( k, 1 ), ldb )
430 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
440 CALL clacgv( nrhs, b( k, 1 ), ldb )
441 CALL cgemv(
'Conjugate transpose', n-k, nrhs, -one,
442 $ b( k+1, 1 ), ldb, a( k+1, k ), 1, one,
444 CALL clacgv( nrhs, b( k, 1 ), ldb )
446 CALL clacgv( nrhs, b( k-1, 1 ), ldb )
447 CALL cgemv(
'Conjugate transpose', n-k, nrhs, -one,
448 $ b( k+1, 1 ), ldb, a( k+1, k-1 ), 1, one,
450 CALL clacgv( nrhs, b( k-1, 1 ), ldb )
457 $
CALL cswap( nrhs, b( k, 1 ), ldb, b( kp, 1 ), ldb )
subroutine xerbla(SRNAME, INFO)
XERBLA
subroutine cgemv(TRANS, M, N, ALPHA, A, LDA, X, INCX, BETA, Y, INCY)
CGEMV
subroutine clacgv(N, X, INCX)
CLACGV conjugates a complex vector.
subroutine cswap(N, CX, INCX, CY, INCY)
CSWAP
subroutine cgeru(M, N, ALPHA, X, INCX, Y, INCY, A, LDA)
CGERU
logical function lsame(CA, CB)
LSAME
subroutine csscal(N, SA, CX, INCX)
CSSCAL