LAPACK  3.6.1
LAPACK: Linear Algebra PACKage
spbcon.f
Go to the documentation of this file.
1 *> \brief \b SPBCON
2 *
3 * =========== DOCUMENTATION ===========
4 *
5 * Online html documentation available at
6 * http://www.netlib.org/lapack/explore-html/
7 *
8 *> \htmlonly
9 *> Download SPBCON + dependencies
10 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/spbcon.f">
11 *> [TGZ]</a>
12 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/spbcon.f">
13 *> [ZIP]</a>
14 *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/spbcon.f">
15 *> [TXT]</a>
16 *> \endhtmlonly
17 *
18 * Definition:
19 * ===========
20 *
21 * SUBROUTINE SPBCON( UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK,
22 * IWORK, INFO )
23 *
24 * .. Scalar Arguments ..
25 * CHARACTER UPLO
26 * INTEGER INFO, KD, LDAB, N
27 * REAL ANORM, RCOND
28 * ..
29 * .. Array Arguments ..
30 * INTEGER IWORK( * )
31 * REAL AB( LDAB, * ), WORK( * )
32 * ..
33 *
34 *
35 *> \par Purpose:
36 * =============
37 *>
38 *> \verbatim
39 *>
40 *> SPBCON estimates the reciprocal of the condition number (in the
41 *> 1-norm) of a real symmetric positive definite band matrix using the
42 *> Cholesky factorization A = U**T*U or A = L*L**T computed by SPBTRF.
43 *>
44 *> An estimate is obtained for norm(inv(A)), and the reciprocal of the
45 *> condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).
46 *> \endverbatim
47 *
48 * Arguments:
49 * ==========
50 *
51 *> \param[in] UPLO
52 *> \verbatim
53 *> UPLO is CHARACTER*1
54 *> = 'U': Upper triangular factor stored in AB;
55 *> = 'L': Lower triangular factor stored in AB.
56 *> \endverbatim
57 *>
58 *> \param[in] N
59 *> \verbatim
60 *> N is INTEGER
61 *> The order of the matrix A. N >= 0.
62 *> \endverbatim
63 *>
64 *> \param[in] KD
65 *> \verbatim
66 *> KD is INTEGER
67 *> The number of superdiagonals of the matrix A if UPLO = 'U',
68 *> or the number of subdiagonals if UPLO = 'L'. KD >= 0.
69 *> \endverbatim
70 *>
71 *> \param[in] AB
72 *> \verbatim
73 *> AB is REAL array, dimension (LDAB,N)
74 *> The triangular factor U or L from the Cholesky factorization
75 *> A = U**T*U or A = L*L**T of the band matrix A, stored in the
76 *> first KD+1 rows of the array. The j-th column of U or L is
77 *> stored in the j-th column of the array AB as follows:
78 *> if UPLO ='U', AB(kd+1+i-j,j) = U(i,j) for max(1,j-kd)<=i<=j;
79 *> if UPLO ='L', AB(1+i-j,j) = L(i,j) for j<=i<=min(n,j+kd).
80 *> \endverbatim
81 *>
82 *> \param[in] LDAB
83 *> \verbatim
84 *> LDAB is INTEGER
85 *> The leading dimension of the array AB. LDAB >= KD+1.
86 *> \endverbatim
87 *>
88 *> \param[in] ANORM
89 *> \verbatim
90 *> ANORM is REAL
91 *> The 1-norm (or infinity-norm) of the symmetric band matrix A.
92 *> \endverbatim
93 *>
94 *> \param[out] RCOND
95 *> \verbatim
96 *> RCOND is REAL
97 *> The reciprocal of the condition number of the matrix A,
98 *> computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an
99 *> estimate of the 1-norm of inv(A) computed in this routine.
100 *> \endverbatim
101 *>
102 *> \param[out] WORK
103 *> \verbatim
104 *> WORK is REAL array, dimension (3*N)
105 *> \endverbatim
106 *>
107 *> \param[out] IWORK
108 *> \verbatim
109 *> IWORK is INTEGER array, dimension (N)
110 *> \endverbatim
111 *>
112 *> \param[out] INFO
113 *> \verbatim
114 *> INFO is INTEGER
115 *> = 0: successful exit
116 *> < 0: if INFO = -i, the i-th argument had an illegal value
117 *> \endverbatim
118 *
119 * Authors:
120 * ========
121 *
122 *> \author Univ. of Tennessee
123 *> \author Univ. of California Berkeley
124 *> \author Univ. of Colorado Denver
125 *> \author NAG Ltd.
126 *
127 *> \date November 2011
128 *
129 *> \ingroup realOTHERcomputational
130 *
131 * =====================================================================
132  SUBROUTINE spbcon( UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK,
133  $ iwork, info )
134 *
135 * -- LAPACK computational routine (version 3.4.0) --
136 * -- LAPACK is a software package provided by Univ. of Tennessee, --
137 * -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
138 * November 2011
139 *
140 * .. Scalar Arguments ..
141  CHARACTER UPLO
142  INTEGER INFO, KD, LDAB, N
143  REAL ANORM, RCOND
144 * ..
145 * .. Array Arguments ..
146  INTEGER IWORK( * )
147  REAL AB( ldab, * ), WORK( * )
148 * ..
149 *
150 * =====================================================================
151 *
152 * .. Parameters ..
153  REAL ONE, ZERO
154  parameter ( one = 1.0e+0, zero = 0.0e+0 )
155 * ..
156 * .. Local Scalars ..
157  LOGICAL UPPER
158  CHARACTER NORMIN
159  INTEGER IX, KASE
160  REAL AINVNM, SCALE, SCALEL, SCALEU, SMLNUM
161 * ..
162 * .. Local Arrays ..
163  INTEGER ISAVE( 3 )
164 * ..
165 * .. External Functions ..
166  LOGICAL LSAME
167  INTEGER ISAMAX
168  REAL SLAMCH
169  EXTERNAL lsame, isamax, slamch
170 * ..
171 * .. External Subroutines ..
172  EXTERNAL slacn2, slatbs, srscl, xerbla
173 * ..
174 * .. Intrinsic Functions ..
175  INTRINSIC abs
176 * ..
177 * .. Executable Statements ..
178 *
179 * Test the input parameters.
180 *
181  info = 0
182  upper = lsame( uplo, 'U' )
183  IF( .NOT.upper .AND. .NOT.lsame( uplo, 'L' ) ) THEN
184  info = -1
185  ELSE IF( n.LT.0 ) THEN
186  info = -2
187  ELSE IF( kd.LT.0 ) THEN
188  info = -3
189  ELSE IF( ldab.LT.kd+1 ) THEN
190  info = -5
191  ELSE IF( anorm.LT.zero ) THEN
192  info = -6
193  END IF
194  IF( info.NE.0 ) THEN
195  CALL xerbla( 'SPBCON', -info )
196  RETURN
197  END IF
198 *
199 * Quick return if possible
200 *
201  rcond = zero
202  IF( n.EQ.0 ) THEN
203  rcond = one
204  RETURN
205  ELSE IF( anorm.EQ.zero ) THEN
206  RETURN
207  END IF
208 *
209  smlnum = slamch( 'Safe minimum' )
210 *
211 * Estimate the 1-norm of the inverse.
212 *
213  kase = 0
214  normin = 'N'
215  10 CONTINUE
216  CALL slacn2( n, work( n+1 ), work, iwork, ainvnm, kase, isave )
217  IF( kase.NE.0 ) THEN
218  IF( upper ) THEN
219 *
220 * Multiply by inv(U**T).
221 *
222  CALL slatbs( 'Upper', 'Transpose', 'Non-unit', normin, n,
223  $ kd, ab, ldab, work, scalel, work( 2*n+1 ),
224  $ info )
225  normin = 'Y'
226 *
227 * Multiply by inv(U).
228 *
229  CALL slatbs( 'Upper', 'No transpose', 'Non-unit', normin, n,
230  $ kd, ab, ldab, work, scaleu, work( 2*n+1 ),
231  $ info )
232  ELSE
233 *
234 * Multiply by inv(L).
235 *
236  CALL slatbs( 'Lower', 'No transpose', 'Non-unit', normin, n,
237  $ kd, ab, ldab, work, scalel, work( 2*n+1 ),
238  $ info )
239  normin = 'Y'
240 *
241 * Multiply by inv(L**T).
242 *
243  CALL slatbs( 'Lower', 'Transpose', 'Non-unit', normin, n,
244  $ kd, ab, ldab, work, scaleu, work( 2*n+1 ),
245  $ info )
246  END IF
247 *
248 * Multiply by 1/SCALE if doing so will not cause overflow.
249 *
250  scale = scalel*scaleu
251  IF( scale.NE.one ) THEN
252  ix = isamax( n, work, 1 )
253  IF( scale.LT.abs( work( ix ) )*smlnum .OR. scale.EQ.zero )
254  $ GO TO 20
255  CALL srscl( n, scale, work, 1 )
256  END IF
257  GO TO 10
258  END IF
259 *
260 * Compute the estimate of the reciprocal condition number.
261 *
262  IF( ainvnm.NE.zero )
263  $ rcond = ( one / ainvnm ) / anorm
264 *
265  20 CONTINUE
266 *
267  RETURN
268 *
269 * End of SPBCON
270 *
271  END
subroutine srscl(N, SA, SX, INCX)
SRSCL multiplies a vector by the reciprocal of a real scalar.
Definition: srscl.f:86
subroutine spbcon(UPLO, N, KD, AB, LDAB, ANORM, RCOND, WORK, IWORK, INFO)
SPBCON
Definition: spbcon.f:134
subroutine xerbla(SRNAME, INFO)
XERBLA
Definition: xerbla.f:62
subroutine slacn2(N, V, X, ISGN, EST, KASE, ISAVE)
SLACN2 estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vec...
Definition: slacn2.f:138
subroutine slatbs(UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X, SCALE, CNORM, INFO)
SLATBS solves a triangular banded system of equations.
Definition: slatbs.f:244